Variational quantum classifier forbBinary classification: real vs synthetic dataset

dc.contributor.authorMaheshwari, Danyal
dc.contributor.authorSierra-Sosa, Daniel
dc.contributor.authorGarcía-Zapirain, Begoña
dc.date.accessioned2024-11-14T11:37:32Z
dc.date.available2024-11-14T11:37:32Z
dc.date.issued2022
dc.date.updated2024-11-14T11:37:32Z
dc.description.abstractNowadays, quantum-enhanced methods have been widely studied to solve machine learning related problems. This article presents the application of a Variational Quantum Classifier (VQC) for binary classification. We utilized three datasets: a synthetic dataset with randomly generated values between 0 and 1, the publicly available University of California Intelligence Machine learning (UCI) sonar dataset consisting of mining data, and a proprietary diabetes dataset related to diabetes with acute diseases and diabetes without acute disease. To deal with the limitation of noisy intermediate-scale quantum systems (NISQ), we used a pre-processing method to enhance the prediction rate when applying the VQC method. The process includes feature selection and state preparation. Quantum state preparation is critical for obtaining a functioning pipeline in a quantum machine learning (QML) model. Amplitude encoding is a state preparation approach that enhances the performance of data encoding and the learning of quantum models. As a result, our proposed methods achieved accuracies of 75%, 71.4%, and 68.73% by using VQC model and in contrast, the amplitude encoding-based VQC achieved 98.40%, 67.3%, and 74.50% accuracies on the synthetic, sonar, and diabetes dataset, respectively.en
dc.description.sponsorshipThis work was supported by the eVIDA Research Group, University of Deusto, Bilbao, Spain, through the Basque Government's under Grant IT 905-16en
dc.identifier.citationMaheshwari, D., Sierra-Sosa, D., & Garcia-Zapirain, B. (2022). Variational Quantum Classifier for Binary Classification: Real vs Synthetic Dataset. IEEE Access, 10, 3705-3715. https://doi.org/10.1109/ACCESS.2021.3139323
dc.identifier.doi10.1109/ACCESS.2021.3139323
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/20.500.14454/1860
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.subject.otherAmplitude encoding
dc.subject.otherQuantum machine learning
dc.subject.otherState preparation
dc.subject.otherVariational quantum classifier and T2DM diabetes
dc.titleVariational quantum classifier forbBinary classification: real vs synthetic dataseten
dc.typejournal article
dcterms.accessRightsopen access
oaire.citation.endPage3715
oaire.citation.startPage3705
oaire.citation.titleIEEE Access
oaire.citation.volume10
oaire.licenseConditionhttps://creativecommons.org/licenses/by/4.0/
oaire.versionVoR
Ficheros en el ítem
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
maheshwari_variational_2021.pdf
Tamaño:
1.06 MB
Formato:
Adobe Portable Document Format
Colecciones