Local regularity for fractional heat equations

dc.contributor.authorBiccari, Umberto
dc.contributor.authorWarma, Mahamadi
dc.contributor.authorZuazua, Enrique
dc.date.accessioned2025-01-07T13:55:29Z
dc.date.available2025-01-07T13:55:29Z
dc.date.issued2018
dc.date.updated2025-01-07T13:55:29Z
dc.description.abstractWe prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set Ω ⊂ ℝN. Proofs combine classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic problems.en
dc.description.sponsorshipThe work of Umberto Biccari was partially supported by the Advanced Grant DYCON (Dynamic Control) of the European Research Council Executive Agency, by the MTM2014-52347 and MTM2017-92996 Grants of the MINECO (Spain) and by the Air Force Office of Scientific Research under the Award No: FA9550-15-1-0027. The work of Mahamadi Warma was partially supported by the Air Force Office of Scientific Research under the Award No: FA9550-15-1-0027. The work of Enrique Zuazua was partially supported by the Advanced Grant DYCON (Dynamic Control) of the European Research Council Executive Agency, FA9550-15-1-0027 of AFOSR, FA9550-14-1-0214 of the EOARD-AFOSR, the MTM2014-52347 and MTM2017-92996 Grants of the MINECO (Spain) and ICON of the French ANRen
dc.identifier.citationBiccari, U., Warma, M., & Zuazua, E. (2018). Local regularity for fractional heat equations. En SEMA SIMAI Springer Series (Vol. 17, pp. 233-249). Springer International Publishing. https://doi.org/10.1007/978-3-319-97613-6_12
dc.identifier.doi10.1007/978-3-319-97613-6_12
dc.identifier.eissn2199-305X
dc.identifier.issn2199-3041
dc.identifier.urihttp://hdl.handle.net/20.500.14454/2194
dc.language.isoeng
dc.publisherSpringer International Publishing
dc.rights© 2018 Springer Nature Switzerland AG
dc.titleLocal regularity for fractional heat equationsen
dc.typebook part
dcterms.accessRightsmetadata only access
oaire.citation.endPage249
oaire.citation.startPage233
oaire.citation.titleSEMA SIMAI Springer Series
oaire.citation.volume17
Ficheros en el ítem