Addendum: Local elliptic regularity for the Dirichlet fractional Laplacian
dc.contributor.author | Biccari, Umberto | |
dc.contributor.author | Warma, Mahamadi | |
dc.contributor.author | Zuazua, Enrique | |
dc.date.accessioned | 2025-01-07T13:57:32Z | |
dc.date.available | 2025-01-07T13:57:32Z | |
dc.date.issued | 2017 | |
dc.date.updated | 2025-01-07T13:57:32Z | |
dc.description.abstract | In [1], for 1 < p < 1<p< ∞, we proved the W loc 2 s p W 2s,p loc local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian (- Δ) s -Δ s on an arbitrary bounded open set of N R N. Here we make a more precise and rigorous statement. In fact, for 1 < p < 2 1<p<2 and s 1 2 s 1 2, local regularity does not hold in the Sobolev space W loc 2 s p W 2s,p loc, but rather in the larger Besov space (B p 2 2 s) loc (B 2s p,2 loc. | en |
dc.identifier.citation | Biccari, U., Warma, M., & Zuazua, E. (2017). Addendum: Local Elliptic Regularity for the Dirichlet Fractional Laplacian. Advanced Nonlinear Studies, 17(4), 837-839. https://doi.org/10.1515/ANS-2017-6020 | |
dc.identifier.doi | 10.1515/ANS-2017-6020 | |
dc.identifier.issn | 1536-1365 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14454/2196 | |
dc.language.iso | eng | |
dc.publisher | Walter de Gruyter GmbH | |
dc.subject.other | Fractional Laplacian | |
dc.subject.other | Dirichlet boundary condition | |
dc.subject.other | Weak solutions | |
dc.subject.other | Local regularity | |
dc.title | Addendum: Local elliptic regularity for the Dirichlet fractional Laplacian | en |
dc.type | journal article | |
dcterms.accessRights | open access | |
oaire.citation.endPage | 839 | |
oaire.citation.issue | 4 | |
oaire.citation.startPage | 837 | |
oaire.citation.title | Advanced Nonlinear Studies | |
oaire.citation.volume | 17 | |
oaire.licenseCondition | https://creativecommons.org/licenses/by/4.0/ | |
oaire.version | VoR |
Ficheros en el ítem
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- biccari_addendum_2017.pdf
- Tamaño:
- 502.97 KB
- Formato:
- Adobe Portable Document Format