Sentiment classification using a single-layered BiLSTM model

dc.contributor.authorHameed, Zabit
dc.contributor.authorGarcía-Zapirain, Begoña
dc.date.accessioned2024-11-14T11:37:48Z
dc.date.available2024-11-14T11:37:48Z
dc.date.issued2020
dc.date.updated2024-11-14T11:37:48Z
dc.description.abstractThis study presents a computationally efficient deep learning model for binary sentiment classification, which aims to decide the sentiment polarity of people's opinions, attitudes, and emotions expressed in written text. To achieve this, we exploited three widely practiced datasets based on public opinions about movies. We utilized merely one bidirectional long short-term memory (BiLSTM) layer along with a global pooling mechanism and achieved an accuracy of 80.500%, 85.780%, and 90.585% on MR, SST2 and IMDb datasets, respectively. We concluded that the performance metrics of our proposed approach are competitive with the recently published models, having comparatively complex architectures. Also, it is inferred that the proposed single-layered BiLSTM based architecture is computationally efficient and can be recommended for real-time applications in the field of sentiment analysis.en
dc.description.sponsorshipThis work was supported by the eVida research group, University of Deusto, Bilbao, Spain, under Grant IT 905-16en
dc.identifier.citationHameed, Z., & Garcia-Zapirain, B. (2020). Sentiment Classification Using a Single-Layered BiLSTM Model. IEEE Access, 8, 73992-74001. https://doi.org/10.1109/ACCESS.2020.2988550
dc.identifier.doi10.1109/ACCESS.2020.2988550
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/20.500.14454/1868
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.subject.otherBidirectional long short-term memory
dc.subject.otherDeep learning
dc.subject.otherLong-term dependencies
dc.subject.otherNatural language processing
dc.subject.otherSentiment analysis
dc.titleSentiment classification using a single-layered BiLSTM modelen
dc.typejournal article
dcterms.accessRightsopen access
oaire.citation.endPage74001
oaire.citation.startPage73992
oaire.citation.titleIEEE Access
oaire.citation.volume8
oaire.licenseConditionhttps://creativecommons.org/licenses/by/4.0/
oaire.versionVoR
Ficheros en el ítem
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
hameed_sentiment_2020.pdf
Tamaño:
5.14 MB
Formato:
Adobe Portable Document Format
Colecciones