Examinando por Autor "Zuazua, Enrique"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Dynamics and control for multi-agent networked systems: a finite-difference approach(World Scientific Publishing Co. Pte Ltd, 2019-04) Biccari, Umberto; Ko, Dongnam; Zuazua, EnriqueWe analyze the dynamics of multi-agent collective behavior models and its control theoretical properties. We first derive a large population limit to parabolic diffusive equations. We also show that the nonlocal transport equations commonly derived as the mean-field limit, are subordinated to the first one. In other words, the solution of the nonlocal transport model can be obtained by a suitable averaging of the diffusive one. We then address the control problem in the linear setting, linking the multi-agent model with the spatial semi-discretization of parabolic equations. This allows us to use the existing techniques for parabolic control problems in the present setting and derive explicit estimates on the cost of controlling these systems as the number of agents tends to infinity. We obtain precise estimates on the time of control and the size of the controls needed to drive the system to consensus, depending on the size of the population considered. Our approach, inspired on the existing results for parabolic equations, possibly of fractional type, and in several space dimensions, shows that the formation of consensus may be understood in terms of the underlying diffusion process described by the heat semi-group. In this way, we are able to give precise estimates on the cost of controllability for these systems as the number of agents increases, both in what concerns the needed control time horizon and the size of the controls.Ítem Propagation of one- and two-dimensional discrete waves under finite difference approximation(Springer, 2020-12) Biccari, Umberto; Marica, Aurora; Zuazua, EnriqueWe analyze the propagation properties of the numerical versions of one- and two-dimensional wave equations, semi-discretized in space by finite difference schemes. We focus on high-frequency solutions whose propagation can be described, both at the continuous and at the semi-discrete levels, by micro-local tools. We consider uniform and non-uniform numerical grids as well as constant and variable coefficients. The energy of continuous and semi-discrete high-frequency solutions propagates along bi-characteristic rays, but their dynamics are different in the continuous and the semi-discrete setting, because of the nature of the corresponding Hamiltonians. One of the main objectives of this paper is to illustrate through accurate numerical simulations that, in agreement with micro-local theory, numerical high-frequency solutions can bend in an unexpected manner, as a result of the accumulation of the local effects introduced by the heterogeneity of the numerical grid. These effects are enhanced in the multi-dimensional case where the interaction and combination of such behaviors in the various space directions may produce, for instance, the rodeo effect, i.e., waves that are trapped by the numerical grid in closed loops, without ever getting to the exterior boundary. Our analysis allows to explain all such pathological behaviors. Moreover, the discussion in this paper also contributes to the existing theory about the necessity of filtering high-frequency numerical components when dealing with control and inversion problems for waves, which is based very much on the theory of rays and, in particular, on the fact that they can be observed when reaching the exterior boundary of the domain, a key property that can be lost through numerical discretization.Ítem A two-stage numerical approach for the sparse initial source identification of a diffusion–advection equation(Institute of Physics, 2023-09) Biccari, Umberto; Song, Yongcun; Yuan, Xiaoming; Zuazua, EnriqueWe consider the problem of identifying a sparse initial source condition to achieve a given state distribution of a diffusion–advection partial differential equation after a given final time. The initial condition is assumed to be a finite combination of Dirac measures. The locations and intensities of this initial condition are required to be identified. This problem is known to be exponentially ill-posed because of the strong diffusive and smoothing effects. We propose a two-stage numerical approach to treat this problem. At the first stage, to obtain a sparse initial condition with the desire of achieving the given state subject to a certain tolerance, we propose an optimal control problem involving sparsity-promoting and ill-posedness-avoiding terms in the cost functional, and introduce a generalized primal-dual algorithm for this optimal control problem. At the second stage, the initial condition obtained from the optimal control problem is further enhanced by identifying its locations and intensities in its representation of the combination of Dirac measures. This two-stage numerical approach is shown to be easily implementable and its efficiency in short time horizons is promisingly validated by the results of numerical experiments. Some discussions on long time horizons are also included.