Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • Repositorio Institucional
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Villanueva Merino, Asel"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Leveraging Local Digital Twins for planning age-friendly urban environments
    (Elsevier Ltd, 2024-12) Villanueva Merino, Asel; Urra Uriarte, Silvia; Izkara Martínez, José Luis; Campos Cordobes, Sergio; Aranguren Ubierna, Andoni; Molina Costa, Patricia
    In an era of rapid urbanisation and an ageing population, innovative urban planning paradigms and tools are essential for creating inclusive, safe, resilient, and sustainable cities. Moreover, in the digital age, untapped potential exists for using disruptive technologies in urban planning to enhance evidence-based decision-making. This study explored the promotion of age-friendly environments through the transformative potential of Local Digital Twins (LDTs) by integrating geographic information system (GIS) data, data analytics, and artificial intelligence. Tested in the European Commission-funded URBANAGE project, this study presents a digital twin-based Long-Term Urban Planner tool with simulation capabilities that allow for a comprehensive analysis and modelling of the effects of urban interventions. Two use cases are showcased: one suggesting public space intervention and the other tackling future demographic trends. The main contribution of this study is the definition and development of an LDT using a modular-component-based approach that facilitates reuse and adaptation. Unlike isolated approaches, it provides a holistic solution that integrates social and technological domains. This study advances the understanding of the use of LDTs to create inclusive neighbourhoods by assessing neighbourhood age-friendliness and proposing informed urban interventions while underscoring the importance of robust data governance and capacity building among civil servants.
  • No hay miniatura disponible
    Ítem
    Spatial decision making for improvement of the resilience of the historic areas: SHELTER DSS
    (Springer Science and Business Media Deutschland GmbH, 2024) Villanueva Merino, Asel; López-de-Aguileta-Benito, Amaia; Izkara Martínez, José Luis; Egusquiza, Aitziber
    One of the challenges of Europe is how to adapt cultural heritage and historic areas to current climate change and natural disasters, these are causing irreversible losses on natural and historical heritage. The identification of the risk that heritage assets are suffering, and which are the best strategies or solutions to protect and conserve them is crucial. The article describes a decision support system that provides information in a GIS3D way, improving the analysis of the data and helps finding the best solutions for each heritage asset, working in an early-stage phase. The tool is divided in two components, on the one hand an interactive catalog of solutions, implementing multiple filters and multicriteria analysis methodology, making easier to find the solutions that better match each case. On the other hand, a risk assessment baseline visualization component that shows precalculated risk score for different hazards (Heat waves, wildfires, earthquakes, storms, flooding, and subsidence) in a table and in GIS 3D assets, and the same component allows the simulation of the impact of the solutions in the different capabilities of the assets. The tool allows saving the generated scenario for being loaded in the future. The components of the tool are flexible and can be used separately, accessing to visualization of solutions and their information, or making simulations.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias