Examinando por Autor "Song, Yongcun"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem FedADMM-InSa: an inexact and self-adaptive ADMM for federated learning(Elsevier Ltd, 2025-01) Song, Yongcun; Wang, Ziqi; Zuazua, EnriqueFederated learning (FL) is a promising framework for learning from distributed data while maintaining privacy. The development of efficient FL algorithms encounters various challenges, including heterogeneous data and systems, limited communication capacities, and constrained local computational resources. Recently developed FedADMM methods show great resilience to both data and system heterogeneity. However, they still suffer from performance deterioration if the hyperparameters are not carefully tuned. To address this issue, we propose an inexact and self-adaptive FedADMM algorithm, termed FedADMM-InSa. First, we design an inexactness criterion for the clients’ local updates to eliminate the need for empirically setting the local training accuracy. This inexactness criterion can be assessed by each client independently based on its unique condition, thereby reducing the local computational cost and mitigating the undesirable straggle effect. The convergence of the resulting inexact ADMM is proved under the assumption of strongly convex loss functions. Additionally, we present a self-adaptive scheme that dynamically adjusts each client's penalty parameter, enhancing algorithm robustness by mitigating the need for empirical penalty parameter choices for each client. Extensive numerical experiments on both synthetic and real-world datasets have been conducted. As validated by some tests, our FedADMM-InSa algorithm improves model accuracy by 7.8% while reducing clients’ local workloads by 55.7% compared to benchmark algorithms.Ítem A two-stage numerical approach for the sparse initial source identification of a diffusion–advection equation(Institute of Physics, 2023-09) Biccari, Umberto; Song, Yongcun; Yuan, Xiaoming; Zuazua, EnriqueWe consider the problem of identifying a sparse initial source condition to achieve a given state distribution of a diffusion–advection partial differential equation after a given final time. The initial condition is assumed to be a finite combination of Dirac measures. The locations and intensities of this initial condition are required to be identified. This problem is known to be exponentially ill-posed because of the strong diffusive and smoothing effects. We propose a two-stage numerical approach to treat this problem. At the first stage, to obtain a sparse initial condition with the desire of achieving the given state subject to a certain tolerance, we propose an optimal control problem involving sparsity-promoting and ill-posedness-avoiding terms in the cost functional, and introduce a generalized primal-dual algorithm for this optimal control problem. At the second stage, the initial condition obtained from the optimal control problem is further enhanced by identifying its locations and intensities in its representation of the combination of Dirac measures. This two-stage numerical approach is shown to be easily implementable and its efficiency in short time horizons is promisingly validated by the results of numerical experiments. Some discussions on long time horizons are also included.