Examinando por Autor "Nadimi, Sadegh"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Estimation of mesoscale surface energy in the kinetic adhesion test(Elsevier B.V., 2024-02-15) Pedrolli, Lorenzo; Nadimi, Sadegh; Achiaga, Beatriz; López García, AlejandroThe Johnson-Kendall-Roberts (JKR) contact model is widely accepted for the elastic adhesive contacts of particles. In this work, we present a novel interpretation of the JKR model that allows for the development of a test procedure with practical hardware called the Kinetic Adhesion Test. The Kinetic Adhesion Test is based on the balance between kinetic and adhesive energy and allows for the determination of the mesoscale adhesive energy, Γ. The work not only presents the test procedure but also provides a derivation of the formula to determine Γ. This test procedure has been validated by experimental results compared with direct measurement of the contact radius. Overall, the presented work provides a practical approach for determining adhesive energy, which is an essential factor in accurately simulating powder behaviour using DEM. This work contributes to the advancement of the accuracy of DEM simulations and, therefore, to the improvement of research in multiple fields, including materials science, engineering, and pharmaceuticals.Ítem Kinetic adhesion test to determine particle surface energy(Elsevier Ltd, 2023-06-01) Pedrolli, Lorenzo; Nadimi, Sadegh; Maramizonouz, Sadaf; Achiaga, Beatriz; López García, AlejandroA new hardware is described to quantify the particle surface energy by assuming that the Johnson Kendall and Roberts theory of elastic-adhesive contacts is applicable. The setup is used in the active section of the measurement, where newly designed elements provide the sharp impact needed to detach the particles under the action of their own kinetic energy. It employs a selection of sensors to provide the necessary measurements in a streamlined procedure, which lets the user complete one test in less than one minute. The temporal resolution is 1μs for the contact time measurement and the velocity has a repeatability of 1%. The surface energy is a significant parameter for the characterisation of particulate materials and is widely used in Discrete Element simulations of the bulk behaviour.