Examinando por Autor "Maheshwari, Danyal"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Quantum machine learning applications in the biomedical domain: a systematic review(Institute of Electrical and Electronics Engineers Inc., 2022) Maheshwari, Danyal; García-Zapirain, Begoña; Sierra-Sosa, DanielQuantum technologies have become powerful tools for a wide range of application disciplines, which tend to range from chemistry to agriculture, natural language processing, and healthcare due to exponentially growing computational power and advancement in machine learning algorithms. Furthermore, the processing of classical data and machine learning algorithms in the quantum domain has given rise to an emerging field like quantum machine learning. Recently, quantum machine learning has become quite a challenging field in the case of healthcare applications. As a result, quantum machine learning has become a common and effective technique for data processing and classification across a wide range of domains. Consequently, quantum machine learning is the most commonly used application of quantum computing. The main objective of this work is to present a brief overview of current state-of-the-art published articles between 2013 and 2021 to identify, analyze, and classify the different QML algorithms and applications in the biomedical field. Furthermore, the approach adheres to the requirements for conducting systematic literature review techniques such as research questions and quality metrics of the articles. Initially, we discovered 3149 articles, excluded the 2847 papers, and read the 121 full papers. Therefore, this research compiled 30 articles that comply with the quantum machine learning models and quantum circuits using biomedical data. Eventually, this article provides a broad overview of quantum machine learning limitations and future prospects.Ítem Variational quantum classifier for binary classification: real vs synthetic dataset(Institute of Electrical and Electronics Engineers Inc., 2022) Maheshwari, Danyal; Sierra-Sosa, Daniel; García-Zapirain, BegoñaNowadays, quantum-enhanced methods have been widely studied to solve machine learning related problems. This article presents the application of a Variational Quantum Classifier (VQC) for binary classification. We utilized three datasets: a synthetic dataset with randomly generated values between 0 and 1, the publicly available University of California Intelligence Machine learning (UCI) sonar dataset consisting of mining data, and a proprietary diabetes dataset related to diabetes with acute diseases and diabetes without acute disease. To deal with the limitation of noisy intermediate-scale quantum systems (NISQ), we used a pre-processing method to enhance the prediction rate when applying the VQC method. The process includes feature selection and state preparation. Quantum state preparation is critical for obtaining a functioning pipeline in a quantum machine learning (QML) model. Amplitude encoding is a state preparation approach that enhances the performance of data encoding and the learning of quantum models. As a result, our proposed methods achieved accuracies of 75%, 71.4%, and 68.73% by using VQC model and in contrast, the amplitude encoding-based VQC achieved 98.40%, 67.3%, and 74.50% accuracies on the synthetic, sonar, and diabetes dataset, respectively.