Examinando por Autor "Castillo Olea, Cristian"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Connected-UNets: a deep learning architecture for breast mass segmentation(Nature Research, 2021-12) Baccouche, Asma; García-Zapirain, Begoña; Castillo Olea, Cristian; Elmaghraby, Adel SaidBreast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors. Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With the rapid development of deep learning and its application to medical imaging challenges, UNet and its variations is one of the state-of-the-art models for medical image segmentation that showed promising performance on mammography. In this paper, we propose an architecture, called Connected-UNets, which connects two UNets using additional modified skip connections. We integrate Atrous Spatial Pyramid Pooling (ASPP) in the two standard UNets to emphasize the contextual information within the encoder–decoder network architecture. We also apply the proposed architecture on the Attention UNet (AUNet) and the Residual UNet (ResUNet). We evaluated the proposed architectures on two publically available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Experiments were also conducted using additional synthetic data using the cycle-consistent Generative Adversarial Network (CycleGAN) model between two unpaired datasets to augment and enhance the images. Qualitative and quantitative results show that the proposed architecture can achieve better automatic mass segmentation with a high Dice score of 89.52%, 95.28%, and 95.88% and Intersection over Union (IoU) score of 80.02%, 91.03%, and 92.27%, respectively, on CBIS-DDSM, INbreast, and the private dataset.Ítem Scalable healthcare assessment for diabetic patients using deep learning on multiple GPUS(IEEE Computer Society, 2019-10) Sierra-Sosa, Daniel; García-Zapirain, Begoña; Castillo Olea, Cristian; Oleagordia Ruiz, Ibon; Nuño Solinís, Roberto; Urtaran Laresgoiti, Maider; Elmaghraby, Adel SaidThe large-scale parallel computation that became available on the new generation of graphics processing units (GPUs) and on cloud-based services can be exploited for use in healthcare data analysis. Furthermore, computation workstations suited for deep learning are usually equipped with multiple GPUs allowing for workload distribution among multiple GPUs for larger datasets while exploiting parallelism in each GPU. In this paper, we utilize distributed and parallel computation techniques to efficiently analyze healthcare data using deep learning techniques. We demonstrate the scalability and computational benefits of this approach with a case study of longitudinal assessment of approximately 150 000 type 2 diabetic patients. Type 2 diabetes mellitus (T2DM) is the fourth case of mortality worldwide with rising prevalence. T2DM leads to adverse events such as acute myocardial infarction, major amputations, and avoidable hospitalizations. This paper aims to establish a relation between laboratory and medical assessment variables with the occurrence of the aforementioned adverse events and its prediction using machine learning techniques. We use a raw database provided by Basque Health Service, Spain, to conduct this study. This database contains 150 156 patients diagnosed with T2DM, from whom 321 laboratory and medical assessment variables recorded over four years are available. Predictions of adverse events on T2DM patients using both classical machine learning and deep learning techniques were performed and evaluated using accuracy, precision, recall and F1-score as metrics. The best performance for the prediction of acute myocardial infarction is obtained by linear discriminant analysis (LDA) and support vector machines (SVM) both balanced and weight models with an accuracy of 97%; hospital admission for avoidable causes best performance is obtained by LDA balanced and SVMs balanced both with an accuracy of 92%. For the prediction of the incidence of at least one adverse event, the model with the best performance is the recurrent neural network trained with a balanced dataset with an accuracy of 94.6%. The ability to perform and compare these experiments was possible through the use of a workstation with multi-GPUs. This setup allows for scalability to larger datasets. Such models are also cloud ready and can be deployed on similar architectures hosted on AWS for even larger datasets.