Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • Repositorio Institucional
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Bogaerts, Toon"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
    (Elsevier Ltd, 2020-03) Bogaerts, Toon; Masegosa Arredondo, Antonio David; Angarita Zapata, Juan S.; Onieva Caracuel, Enrique; Hellinckx, Peter
    Traffic forecasting is an important research area in Intelligent Transportation Systems that is focused on anticipating traffic in order to mitigate congestion. In this work we propose a deep neural network that simultaneously extracts the spatial features of traffic, using graph convolution, and its temporal features by means of Long Short Term Memory (LSTM) cells to make both short-term and long-term predictions. The model is trained and tested using sparse trajectory (GPS) data coming from the ride-hailing service of DiDi in the cities of Xi'an and Chengdu in China. Besides, presenting the deep neural network, we also propose a data-reduction technique based on temporal correlation to select the most relevant road links to be used as input. Combining the suggested approaches, our model obtains better results compared to high-performance algorithms for traffic forecasting, such as LSTM or the algorithms presented in the TRANSFOR19 forecasting competition. The model is capable of maintaining its performance over different time-horizons from 5 min to up to 4 h with multi-step predictions.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias