Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • Repositorio Institucional
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Akter, Mst Shapna"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Cyberbullying detection, prevention, and analysis on social media via trustable LSTM-autoencoder networks over synthetic data: The TLA-NET approach
    (Multidisciplinary Digital Publishing Institute (MDPI), 2025-02) Cuzzocrea, Alfredo; Akter, Mst Shapna; Shahriar, Hossain; García Bringas, Pablo
    The plague of cyberbullying on social media exerts a dangerous influence on human lives. Due to the fact that online social networks continue to daily expand, the proliferation of hate speech is also growing. Consequentially, distressing content is often implicated in the onset of depression and suicide-related behaviors. In this paper, we propose an innovative framework, named as the trustable LSTM-autoencoder network (TLA NET), which is designed for the detection of cyberbullying on social media by employing synthetic data. We introduce a state-of-the-art method for the automatic production of translated data, which are aimed at tackling data availability issues. Several languages, including Hindi and Bangla, continue to face research limitations due to the absence of adequate datasets. Experimental identification of aggressive comments is carried out via datasets in Hindi, Bangla, and English. By employing TLA NET and traditional models, such as long short-term memory (LSTM), bidirectional long short-term memory (BiLSTM), the LSTM-autoencoder, Word2vec, bidirectional encoder representations from transformers (BERT), and the Generative Pre-trained Transformer 2 (GPT-2), we perform the experimental identification of aggressive comments in datasets in Hindi, Bangla, and English. In addition to this, we employ evaluation metrics that include the F1-score, accuracy, precision, and recall, to assess the performance of the models. Our model demonstrates outstanding performance across all the datasets by achieving a remarkable 99% accuracy and positioning itself as a frontrunner when compared to previous works that make use of the dataset featured in this research
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias