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ABSTRACT This paper presents a new method for identifying dynamical systems to get fractional-reduced-
order models based on the process reaction curve. This proposal uses information collected from the process.
It can be applied to processes with an S-shaped step response that can be considered with fractional behavior
and a fractional order range of α ∈ [0.5, 1.0]. The proposed approach combines obtaining the fractional order
of themodel using asymptotic properties of theMittag-Leffler functionwith time-based parameter estimation
by considering two arbitrary points on the process reaction curve. The improvement in terms of accuracy of
the identified FFOPDT model is obtained due to a more accurate estimation of α parameter. This method is
characterized by its effectiveness and simplicity of implementation, which are key aspects when applying at
an industrial level. Several examples are used to illustrate the effectiveness and simplicity of the proposed
method compared to other well-established methods and other approaches based on the process reaction
curve. Finally, it is also implemented on microprocessor-based hardware to demonstrate the applicability of
the proposed method to identify the fractional model of a thermal process.

INDEX TERMS Fractional-order systems, process identification, fractional first-order plus dead-time
model.

I. INTRODUCTION
To design and tune the controller of a feedback control loop,
data about the dynamic behavior of the controlled process
is required. This information is usually obtained from a
reduced-order mathematical model [1].

From the perspective of the controller, the controlled pro-
cess is composed of the process itself, including the final
control element and the measuring instrument. In this con-
text, the considered controlled process model provides the
dynamics between the controller and the measurement instru-
ment output signals. When considering this model, a balance
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must be sought between, on the one hand, simplicity in the
estimation and use of such model and, on the other hand, the
reliable information it must provide to estimate the impact
of the control system on the behavior of the output variable
of the controlled process at the operating point; see [2]. The
information provided by the model typically includes the
gain, the apparent dead-time, and the time constant(s) of
the controlled process.

Despite all the progress achieved in process control during
the last decades, the proportional-integral-derivative (PID)
algorithm is certainly still the most extensive option encoun-
tered in industrial control applications and has become an
important standard for the industrial and academic commu-
nity, see [3]. The most common process models used for
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the purpose of tuning this algorithm are first-order, second-
order, and double-pole plus dead-time (FOPDT, SOPDT, and
DPPDT). Since these models cannot characterize the process
dynamics accurately in some cases, the controlled process
needs to be identified with more accurate models to improve
control loop performance. This has been suggested before in
the technical literature, e.g., in [4], where it is already stated
that more accurate process models are required to derive
optimal PID tuning rules for lag-dominated processes.

One type of approach with a wide variety of identification
procedures in the technical literature is one based on an
open-loop test for integer-order models; see, for example, the
identification procedures described in [5], [6], [7], and [8].
These identification methods require very limited informa-
tion about the controlled process, making them very popular
and appropriate for use in industry. More precisely, among
the procedures based on open-loop step response, some ref-
erences describing identification algorithms fitting different
representative points on the process reaction curve can be
highlighted, see [9], [10], and [11]. Generally, these identi-
fication methods are based on fitting two or three points on
the reaction curve, considering FOPDT, SOPDT, and DPPDT
models. In this context, methods using two and three points
can be distinguished in the literature. In the first group, the
following methods [11], [12], [13], [14] are prominent, while
the methods [15], [16], [17] are considered in the second
group. Note that the identification method considered in [11]
is used as a two-point method for FOPDT andDPPDTmodels
and a three-point method for SOPDT models.

Over recent decades, new computational techniques and
fractional-order calculus have enabled a significant aca-
demic and industrial effort focused mainly on transitioning
from classical controllers and models to those described by
non-integer differential equations.

The main advantages of fractional derivatives are flexibil-
ity and non-locality. Since these derivatives are of fractional
order, real data can be approximated with more flexibility
with these operators than with classical ones. In addition,
they also take into account non-locality, something that the
classical derivatives cannot do. Therefore, they are more suit-
able for cases with memory (non-locality in time) and global
interactions (non-locality in space). Regarding the transition
from classical to fractional-order operators, the interested
reader is referred to [18], which provides a list of proposals
for non-integer order operators and derivatives, the classifi-
cation of the current formulations for these operators, and a
discussion of criteria for classifying fractional operators.

The progressive adoption of fractional calculus in indus-
trial applications is motivated, on the one hand, by its
apparent benefit in the field of modeling [19], [20], [21], and
[22], which has been proven at the industrial level, and, on the
other hand, by the clear advantages of fractional-order PID
controllers over integer-order ones [23], [24], [25], [26]. Con-
sequently, fractional-order dynamic models and controllers
are increasingly present in industrial applications; see, e.g.,
[27] and [28].

In the context of methods for identifying fractional-order
models based on the reaction curve, there is an emerging
range of methods in the literature. Certainly, the most widely
encountered approach in industrial practice is the one based
on nonlinear optimization; see, e.g., [29], [30], [31], and
[32]. They are generally performed by minimizing the error
between the process reaction curve and the step response of
the fractional-order model.

The identification procedures based on the process reac-
tion curve described below are characterized as analytical
techniques, their main feature being the simplicity of imple-
mentation. In [33], some strategies for estimating FFOPDT
model parameters using data from the step response have
been proposed. These strategies combine graphical esti-
mation and numerical computation. The same author has
proposed integral-based estimation methods, characterized
by their robustness in the presence of measurement noise,
in [34] and [35].

Recently, there has been renewed interest in extending
classical three-point identification procedures for fractional-
order processes. In this regard, Gude and García Bringas
presented a general identification method for an FFOPDT
model based on the process reaction curve in [36]. This
identification method can be applied to any process that
exhibits an S-shaped step response. The process informa-
tion is taken from an open-loop step-test experiment by
fitting three arbitrary points on the process reaction curve
(x1-x2-x3%). It has also been shown that the accuracy of the
identified fractional-order model is sensitive to the location
of the representative points on the reaction curve, and rules of
thumb in selecting such a set of points are provided, see [36].
In [37], a simplification of the general identification

procedure is proposed, considering that the three points
are symmetrically located on the process reaction curve
(x-50-(100 − x)%). In this way, the identification procedure
is further simplified.

More recently, the influence of moving the central point
x2 on the process reaction curve while maintaining the sym-
metry of the extreme points (x1 and x3) with respect to the
center of the total range has been studied in [38]. In this
work, results with fractional-order models verify that the
accuracy of the estimated model is sensitive to the position
of the central point within the symmetrical set of points on
the process reaction curve, and it has been discussed how a
more accurately identified model can be determined.

These analytical techniques are characterized by requir-
ing less computational effort and being simple to imple-
ment compared to optimization-based methods. Reference
[39] presents the conceptualization of an efficient and
practical control hardware architecture oriented toward
implementing integer- and fractional-order identification
and control algorithms. The applicability and effective-
ness of the proposed control hardware architecture have
been demonstrated by implementing the identification algo-
rithms proposed in [36] and [37] in different hardware
technologies.
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TABLE 1. Summary of techniques for obtaining reduced-order models based on the process reaction curve.

For the reader’s convenience, Table 1 summarizes the main
characteristics of the different integer- and fractional-order
model identification methods that are based on the pro-
cess reaction curve and are cited above. The informa-
tion contained in this table includes the reference of
the identification method, the type of technique, the
reduced-order model used, and the main characteristics of the
method.

According to all the previously considered, obtaining
a simple-structure fractional-order model for a process is
of significant importance and very helpful for designing

integer- or fractional-order control systems, particularly
those of PID type.

This paper presents a new method for identifying
fractional-order models based on the information collected
from the process reaction curve. This method is applied to
processes exhibiting fractional behavior, as explained in [40],
with an S-shaped step response and a range of fractional order
α ∈ [0.5, 1.0]. The approach used combines obtaining the
fractional order of the model using the asymptotic property
of the Mittag-Leffler function in conjunction with the estima-
tion of the time-based parameters {T ,L} by considering two
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arbitrary points on the process reaction curve. Several exam-
ples will be used to illustrate the simplicity and effectiveness
of the proposed procedure compared to other well-established
methods and approaches based on the process reaction curve.
Finally, it will also be implemented on microprocessor-based
hardware in order to demonstrate the applicability of the
proposed method for identifying the FFOPDT model of a
thermal-based process.

The following is the structure of this paper. Section II
presents some theoretical and preliminary background.
In Section III, a new identification method for FFOPDT
models is proposed based on information collected from the
process reaction curve. The results of some numerical simula-
tions and experimental tests are shown in Section IV to verify
the efficiency and applicability of the proposed procedure
in comparison with other well-recognized methods in the
technical literature. Next, future works and research lines are
described in Section V. Finally, Section VI concludes this
paper.

II. PRELIMINARIES AND THEORETICAL BACKGROUND
This section briefly discusses some basic definitions and
concepts of fractional-order calculus. These kinds of fun-
damental ideas about fractional calculus appear in several
books, for instance, in [41], [42], and [43].
Fractional calculus is a generalization of the traditional

calculus of real numbers to the case of non-integer orders.
It was first developed by Gottfried Leibniz in the 17th cen-
tury, but it did not gain widespread attention until the 20th
century. Fractional calculus has applications in various fields,
including physics, chemistry, engineering, and biology.

This section is divided into the following parts: The first
part introduces the Riemann-Liouville andCaputo derivatives
and their connection. In the second part, the behavior of
the fractional order is considered in α ∈ (0, 1). The third
part deals with the Mittag-Leffler function and its properties.
Then, the Grünwald-Letnikov derivative, used for numerical
computation, is defined. Finally, fractional-order models are
discussed in the context of this work.

A. THE RIEMANN–LIOUVILLE AND THE CAPUTO
FRACTIONAL DERIVATIVE
The Riemann-Liouville and Caputo derivatives are used to
model and solve various problems. For example, they can be
used to model the behavior of systems with memory or that
exhibit non-local behavior. They can also solve differential
equations that are not solvable with traditional integer-order
calculus.

We introduce both derivatives and their connections to have
a complete idea of how they work and what we can expect of
each one.

The first step is to define the Riemann–Liouville fractional
integral of order α > 0 by (see [41], [44], [45], [46]).(

Iαa+h
)
(x) =

1
0(α)

∫ x

a

h(t)
(x − t)1−α

dt, x > a. (1)

We denote by Iαa+ (L1) the class of functions h, represented
by the fractional integral of a summable function, that is,
h = Iαa+ϕ, where ϕ ∈ L1(a, b), α ∈ R and 0 is the gamma
function. A description of this class of functions is given in
[44] and [46].

The Riemann–Liouville and the Caputo fractional deriva-
tives are defined (see [44], [46], [47], [48]):
Definition 1: Let α ≥ 0 and m = [α], where [α] denotes

the integer part of α. The Caputo fractional derivative cDα
a+

is given by [41], [44], and [46]:(
cDα

a+ f
)
(t) := Im−α

a+

(
d
dx

)m

f , (2)

whenever
( d
dx

)m
f ∈ L1[a, b].

Definition 2: Let α ≥ 0 and m = [α], the
Riemann–Liouville fractional derivative RLDα

a+ is given by
[41], [44], and [46]:

RLDα
a+ =

(
d
dx

)m (
Im−α
a+

)
f , (3)

with f ∈ L1[a, b]
Connection between both derivatives:
Lemma 1: Let α ≥ 0 and m = [α] + 1. Suppose that f is

such that cDα
a+ and RLDα

a+ exists. Then

cDα
a+ f =RL Dα

a+ f −

m−1∑
k=0

(x − a)k−α

0(k − α + 1)

(
d
dx

)k

f (a),

Proof of Lemma 1: See [44], [46], and [49].
As a consequence of the previous Lemma, we can have the

following result:
Lemma 2: Let α ≥ 0 and m = [α]. Assume that f is such

that both cDα
a+ and RLDα

a+ exist. Then cDα
a+ f =RL Dα

a+ f if

and only if
( d
dx

)k
f (a) = 0 for k = 0, . . . ,m− 1.

Proof of Lemma 2: Follow by direct calculation from the
previous Lemma.

For example, when 0 < α < 1, then (3) takes the form

RLDα
a+h(x) =

d
dx

1
0(1 − α)

∫ x

a

h(t)
(x − t)α

dt.

B. BEHAVIOR OF THE FRACTIONAL PARAMETER α

In this subsection, we will rely on polynomials to understand
how the derivatives work and the behavior of fractional opera-
tors changes as we approach the fractional parameter α to the
edges of the intervals where they are defined. Through this
discussion, we aim to clarify why we can perceive fractional
calculus as a generalization of classical calculus, despite
relinquishing locality.

Letα ∈ (0, 1). Thenwe consider the real Riemann-Liouville
fractional polynomials defined as (see [47], [48]):

8α,m
:=

(x − a)(m+1)α−1

0 (α) 0 ((m+ 1) α)
,m ∈ N0. (4)

where 1
0(α)0((m+1)α)

can be interpreted as a non-constant
deformation factor of the classical operators. Such fractional
polynomials have the following fractional properties:
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Proposition 1: Let α ∈ (0, 1), a > 0, k ∈ N and m ∈ N0,
then

i I k−α
a+ 8α,m

=
(x−a)mα+k−1

0(α)0(mα+k) ,

ii RLDα
a+8α,m

=

{
0, m = 0,
8α,m−1, m ∈ N,

.

Proof of Proposition 1: Both result from direct calculation
and definition.

This proposition is well defined for all fractional opera-
tors and fractional polynomials defined when α ∈ (0, 1).
We now explore its behavior at the boundaries 0+ and 1−.
For that matter, we state the following result on the fractional
polynomials.
Proposition 2: Let α ∈ (0, 1), a > 0 and m ∈ N0 then

1. lim
α→1−

8α,m
=

(x − a)m

m!

2. lim
α→0+

8α,m
= 0

Proof of Proposition 2:We will prove the first result using
the definition of 8α,m in (4):

lim
α→1−

8α,m
= lim

α→1−

[
(x − a)(m+1)α−1

0 (α) 0((m+ 1)α)

]
.

We know that the gamma function 0 (z) is continuous for z >

0, also ( [44], [46]),

lim
α→1−

0((m+ 1)α) = 0(m+ 1) = m!,m ∈ N0,

On the other hand, the continuity of (x − a)z with respect to
z ∈ R, tells us that

lim
α→1−

(x − a)(m+1)α−1
= (x − a)m,m ∈ N0.

Finally, since lim
α→1−

0 (α) = 1, the result follows. For the

second statement, we follow a similar reasoning.
We now state similar results for the fractional derivative

and integral of our fractional polynomials.
Proposition 3: Let α ∈ (0, 1), a > 0, k ∈ N and m ∈

N0 then

1. lim
α→1−

[
I k−α
a+ 8α,m

]
=

(x − a)m+k−1

(m+ k − 1)!
,

2. lim
α→1−

[
RLDα

a+8α,m]
=


0, m = 0
(x − a)m−1

(m− 1)!
, m ̸= 0

,

3. lim
α→0+

[
I k−α
a+ 8α,m

]
= 0,

4. lim
α→0+

[
RLDα

a+8α,m]
= 0.

Proof of Proposition 3: Results 1 and 3 follow by continu-
ity of all terms in both right-hand side expressions below:

lim
α→1−

[
I k−α
a+ 8α,m

]
= lim

α→1−

(x − a)mα+k−1

0 (α) 0 (mα + k)
,

lim
α→0+

[
I k−α
a+ 8α,m

]
= lim

α→0+
α

(x − a)mα+k−1

0 (α + 1) 0 (mα + k)
.

Results 2 and 4 follow as a direct consequence of
propositions 1 and 2 by evaluating

lim
α→1−

[
RLDα

a+8α,m]
= lim

α→1−

{
0, m = 0,
8α,m−1, m ∈ N,

,

lim
α→0+

[
RLDα

a+8α,m]
= lim

α→0+

{
0, m = 0,
8α,m−1, m ∈ N,

.

Remark 1: If k = 1, by proposition 1, we have that

lim
α→1−

[
I1−α
a+ 8α,m

]
=

(x−a)m

m!
= I0

[
lim

α→1−
8α,m

]
. Where

I0 denotes the identity operator such that I0 [f (x)] = f (x).
Remark 2: Interestingly enough, if k = 2, we have that

lim
α→1−

[
I2−α
a+ 8α,m

]
=

(x−a)m+1

(m+1)! = J
[
lim

α→1−
8α,m

]
, where J

denotes the classical integral operator J [f (x)] =
∫ x
a f (t) dt .

Remark 3: If k = 1, we have that lim
α→1−

[
RLDα

a+8α,m
]

=

(x−a)m−1

(m−1)! =
d
dx

[
lim

α→1−
8α,m

]
, where d

dx denotes the classical

differential operator.
In other words from the previous remark, if α approaches

1 from the left, the fractional integral operator I k−α
a+ becomes

the identity when k = 1 and the classical integral operator
when k = 2; furthermore, the fractional differential operator
RLDα

a+ becomes the classical first-order one. Also, all frac-
tional polynomials 8α,m become classical ones (with natural
or null power m).

Moreover, propositions 2 and 3 show that I1−α
a+ becomes

the classical integral operator and RLDα
a+ becomes the identity

one as α approaches to 0 from the right. Although it seems
trivial, this result complements the previous remarks because
it is well-known that real fractional operators converge to the
classical ones as α goes to the frontiers of (0, 1).
From an operator’s point of view (see [44], [46], [50]), the

real differential property lim
α→1−

RLDα
xl+

= ∂xl is supported by

definitions of the Riemann–Liouville fractional integral and
differential operator.

C. THE TWO-PARAMETER MITTAG-LEFFLER FUNCTION
AND ITS PROPERTIES
Definition 3: The two-parameter function of the Mittag-

Leffler type, which plays a very important role in fractional
calculus [51], [52], for an arbitrary value z ∈ C can be defined
as:

Eα,β (z) =

∞∑
r=0

zr

0(αr + β)
, (5)

where α ∈ R+, β ∈ C, and 0(·) is the Gamma function, [41],
[44].

This function is uniformly convergent over C with the
following properties:

Let α, β ≥ 0

(i) If β = 1. The function coincides with the clas-
sical one-parameter Mittag-Leffler function, i.e.,
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Eα,1 = Eα , which for an arbitrary value z is defined
as:

Eα(z) =

∞∑
r=0

zr

0(αr + 1)
, (6)

(ii) If α = 1 and β = 1. The function coincides with
the exponential.

E1,1(z) = E1(z) = exp(z) (7)

(iii) If α = 1 and β =
1
2

E 1
2 ,1(z) = E 1

2
(z) = exp(z2) erfc(−z) (8)

Theorem 1: Asymptotic behavior of the Mittag-Leffler
function. Let α ∈ (0, 2) and β ∈ C, let µ ∈ R arbitrary, such
that πα

2 < µ < min{π, πα}. Then, for an arbitrary integer
p ≥ 1, the following asymptotic expansion holds:

Eα,β (z)

=
1
α
z(1−β)/αexp(z1/α) −

p∑
r=1

z−r

0(β − αr)
+ O(z−1−p), (9)

as |z| → ∞ and |argz| ≤ µ. The proof can be found directly
on page 32, Theorem 1.3 of the book [41].
And changing the location of the complex plane results in

the following result:
Theorem 2: Asymptotic behavior of the Mittag-Leffler

function. Let α ∈ (0, 2) and β ∈ C, let µ ∈ R, such that
πα
2 < µ < min{π, πα}. Then, for an arbitrary integer p ≥ 1,
the following asymptotic expansion holds:

Eα,β (z) = −

p∑
r=1

z−r

0(β − αr)
+ O(z−1−p), (10)

as z → ∞ and µ ≤ |argz| ≤ π .
The proof can be found directly on page 33, Theorem 1.4 of

the book [41].
Remark 4: The results remain valid for any sub interval A

of (0, 2).

D. GRÜNWALD-LETNIKOV DERIVATIVE
In this work, we will use the Grünwald-Letnikov derivative,
which is advantageous to the numerical computation given
that it is defined in a discrete way. And can be obtained as
a limiting case of the Riemann-Liouville derivative. More
precisely, we have:

RLDα
a f (x)

= lim
h→0

1
hα

∞∑
k=0

(−1)k
(

α

k

)
f (x − kh)

0(n− α)(x − kh− a)n−α
(11)

where n− 1 < α < n and h is a step size which converge to
(see [44], [45], [46], [49]).

E. PROCESS MODELS
In the context of this paper, where process control prob-
lems are dealt with, the following general form of a
fractional-order transfer function representation of a process
model is used:

P(s) =

m∑
i=0

bisβi

n∑
i=0

aisαi
e−Ls, (12)

where ai, bi ∈ R, αi, βi ∈ R+, and L ∈ R+. It it is common
to take β0 = α0 = 0 so that the static gain of the system is
given by K = b0/a0.
The particular case where (bm = bm−1 = . . . = b1 = 0;

an = an−1 = . . . = a2 = 0; a1 = T ; a0 = 1; b0 = K ; β0 =

0; α1 = α; α0 = 0) leads to the following fractional-order
differential equation:

T · Dαy(t) + y(t) = K · u(t − L), (13)

where K is the process gain, T > 0 is the time constant, L ≥

0 is the apparent deadtime, and α is the fractional order of the
model. The initial conditions are generally taken as zero to
obtain the FFOPDT transfer function model:

P(s) =
K · e−Ls

1 + Tsα
, (14)

Figure 1 shows the step responses of the FFOPDT model for
increasing values of α, with α ∈ [0.2, 1.8]. The dashed line
represents the step response of the system for α = 1, which
corresponds to the standard FOPDT model.

The following set of parameters:

θP = {K ,T ,L, α}, (15)

represents the FFOPDT model parameters, which will be
identified in this paper using information taken from the
process reaction curve.

III. MODEL IDENTIFICATION METHOD
In this section, the expressions for estimating the param-
eters of the FFOPDT model are developed. The approach
considered ingeniously combines techniques used in other
identification methods but which have never been used
together. On the one hand, the estimation of parameter α is
obtained by exploiting the asymptotic behavior of theMittag-
Leffler function, as proposed, e.g., in [33]. On the other
hand, the model parameters T and L are estimated using two
arbitrary points on the process reaction curve, as discussed
in [36].

Figure 2 illustrates a step signal u(t) with amplitude 1u as
input, and a signal yα(t) with an amplitude variation of 1y as
system response. FFOPDT model (14) response to a 1u step
input change is:

yα(t) =

{
0, 0 ≤ t < L

K
[
1 − Eα,1[− 1

T (t − L)α]
]
1u, t ≥ L

(16)
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FIGURE 1. FFOPDT model step responses for different values of
α ∈ [0.2, 1.8]. The response is either overdamped or underdamped
depending on the value of α. The case for FOPDT models, α = 1,
is depicted in red dashed line.

FIGURE 2. Step input signal u(t) , S-shaped step response signal yα(t),
and the corresponding representative points x1 and x3 on the process
reaction curve.

where Eα,β is the two-parameter Mittag-Leffler function,
which was previously defined in (5).
Remark 5: The expressions of yα(t) for the boundary val-

ues of α are: lim
α→1−

yα(t) = K
[
1− exp

[
−

1
T
(t −L)

]]
1u, and

lim
α→0+

yα(t) = K
[
1 −

∞∑
r=0

(
−

1
T

)r]
1u

In this context, tx represents the time required for the
process output to reach x%of the process output total change,
which corresponds to the point yα(tx) on the process reaction
curve.
Normalizing the process output yα(t) with respect to the
process output total change 1y = K · 1u and substitut-
ing the time variable t for the shifted and normalized time
τ =

1
T (t − L)α , eq. (16) is reduced to the following

expression:

ỹα(τ ) = 1 − Eα,1(−τ ), τ ≥ 0 (17)

In this context, τx is the normalized time required for the
normalized process output to reach x% of the normalized
process output total change, which corresponds to the point
ỹα(τx) on that curve. Figure 3 illustrates the normalized pro-
cess output ỹα(t/Tar ) for different values of α ∈ [0.5, 1.0],
where Tar = L + T 1/α is the average residence time.

In the following subsections, the parameters of the
FFOPDT model, θP = {K ,T ,L, α}, will be estimated.
The estimation of K is performed conventionally, as for
integer-order models. The parameter α is obtained from
the asymptotic behavior of the system step response yα(t).
Finally, the time-based model parameters, {T ,L}, are esti-
mated by considering two arbitrary points on the process
reaction curve.

A. ESTIMATION OF K
The gain K for model (14) can be obtained from the process
reaction curve based on the following expression:

K =
1y
1u

, (18)

where 1y is the process output total change to the step input
change 1u, as shown in Fig. 2. In this respect, the estimation
method for the static gain K is the same as for integer-order
models.

B. ESTIMATION OF α

In this work, parameter α can be estimated directly from the
process reaction curve. In this regard, the asymptotic behavior
of the Mittag-Leffler function is exploited.

Considering the step response of the FFOPDT model in
eq. (16) and the asymptotic behavior of the Mittag-Leffler
function, as expressed in eq. (10), the asymptotic behavior of
ȳα(t) can be well approximated by the function:

ȳα(t) ≃ K − ηt−α, (19)

where ȳα(t) is the unit step response of the system, i.e.,
ȳα(t) =

yα(t)
1u and η is a finite constant value. From (19),

parameter α can be estimated as:

α = − lim
t→∞

log[K − ȳα(t)]
log(t)

, (20)

In the above expression, the value of the parameter α

can be determined by considering the negative slope of
log[K − ȳα(t)] with respect to log(t) for large values of t .

C. ESTIMATION OF T AND L
If ỹα(τx) is a specific output normalized value –being between
0 and 1, or 0% and 100% of the process output total change–
the normalized time τx can be obtained using (17). Then, the
time tx required for the process output (16) to reach such point
is:

tx = L + (τxT )1/α, (21)

Remark 6: It is important to note that α ∈ (0, 1] for the
expression (21) to make sense.
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FIGURE 3. Normalized step responses yα/(K · 1u) of the FFOPDT model for different values of the normalized dead-time
τα = L/(L + T 1/α). In the figure, the normalized dead-times used are τα = 0 (red), 0.25, 0.5, 0.75, and 1 (blue). Note that the cases
α = 0.5, 0.75, and 1 have been considered and that the time is normalized with respect to the average residence time
Tar = L + T 1/α .

The time-based parameters {T ,L} can be solved by con-
sidering two points, {yα(tx1), tx1} and {yα(tx3), tx3}, on the
reaction curve. Then, the following set of equations is
defined: {

tx1 = L + (τx1T )1/α

tx3 = L + (τx3T )1/α
(22)

The corresponding two equivalent normalized points consid-
ered for estimating parameters {T ,L} are {ỹα(τx1), τx1} and
{ỹα(τx3), τx3}, respectively.
Combining both expressions, the model parameters T and

L can be obtained as functions of the times {tx1, tx3} and the
normalized times {τx1, τx3}:

T = aα(tx3 − tx1)α, (23)

where

a =
1

(τ 1/αx3 − τ
1/α
x1 )

, (24)

and

L = tx3 − τ
1/α
x3 T 1/α. (25)

Note that functions f2(α) and f3(α) can be defined from
(23) and (25), which depend on α and the normalized times
τx1 and τx3, and τx3, respectively.

f2(α) = aα, (26)

f3(α) = τ
1/α
x3 , (27)

Functions f2 and f3 are determined from the data sets

{α, aα} and
{
α, τ

1/α
x3

}
for 0.5 ≤ α ≤ 1.0 and are generally

expressed by rational functions resulting from least-squares
curve fitting for the selected set of points (x1-x3%).

In conclusion, the expressions for determining the
time-based model parameters, {T ,L}, using the times
required for the response to reach two arbitrary points x1 and
x3 on the process reaction curve, tx1 and tx3, are as follows:{

T = f2(α)(tx3 − tx1)α

L = tx3 − f3(α)T 1/α (28)

In (28), α > 0 is considered and T > 0 is fulfilled in a natural
way, since τx1 < τx3 and tx1 < tx3. Another condition that
must be fulfilled in order to meet L ≥ 0 is the following:

tx3 ≥ (τx3T )(1/α). (29)

D. ALGORITHM
To facilitate software implementation, the identification
method proposed in this paper is developed below in the form
of an algorithm. The algorithm can be divided into two parts:
an initialization part, where the rational expressions for f2(α)
and f3(α) are determined as functions of α and the selected
points x1 and x3, and another part that includes the main
algorithm. In this method, the variation of the input signal
1u and the process output1y, and the times required to reach
x1% (tx1) and x3% (tx3) of the process output total change on
the reaction curve must be collected in order to estimate the
FFOPDT model parameters θP = {K ,T ,L, α}.
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Algorithm 1 FFOPDT Model Identification Method Using
the Asymptotic Property of the Mittag-Leffler Function and
Two Points on the Process Reaction Curve
Input: times {tx1, tx3}, 1y, and 1u collected from the pro-

cess reaction curve
Output: FFOPDT model parameters θP = {K ,T ,L, α}

Initialization:
1: Selection of points x1 and x3 on the process reaction curve

2: Determination of normalized times τx1 and τx3 using
eq. (17)

3: Determination of data sets {α, aα} and
{
α, τ

1/α
x3

}
in the

range 0.5 ≤ α ≤ 1.0 for obtaining f2(α) and f3(α)
functions according to (26) and (27)

4: Calculation of rational expressions for functions f2(α)
and f3(α) by using least-squares curve fitting
Main Algorithm:

5: Calculate the process gain K using (18)
6: Estimate the value of α using expression (20)
7: Calculate the value of functions f2(α) and f3(α) for the

estimated value of α using rational expressions obtained
in step 4

8: Determine the value of T using equation (23)
9: Determine the value of L using equation (25)

10: return θP

Note that all expressions used in the identification
algorithm are analytical. This makes its implementation sig-
nificantly simpler.

E. LIMITATIONS
The following are some observations and comments on the
limitations of the identification method in industrial practice:

1) This work is restricted to identifying processes exhibit-
ing fractional behavior, characterized by a monotonic
S-shaped response and with an order in the range
0.50 ≤ α ≤ 1.00. Such processes with essen-
tially monotonic step responses are prevalent in process
control [2].

2) In an industrial environment, it is common for the
feedback signal of the controlled process to include
measurement noise that must be properly filtered for
model identification and control purposes. Since the
filter dynamics will be an integral part of the con-
trolled process to be identified, measurement noise
has not been considered in the proposed identification
procedure.

3) It is widely known in the industrial context that
processes present nonlinearities. The dynamic charac-
teristics of the process change with the operating point
of the control loop, which may vary due to a change
in the setpoint or due to the effect of disturbances.
Therefore, it must be considered that there is an implicit
uncertainty in the nominal model. Since the main use

TABLE 2. Parameters {pi , qi } of the rational functions f2(α) and f3(α) for
the set of points (10-90%).

of the identified fractional-order model is to design the
control system, the usual approach is to consider the
model uncertainty at the controller design stage; see,
for example, [2] for integer-order controllers and [27]
for fractional-order controllers. Thus, a certain degree
of robustness of the designed control system against
model uncertainties is guaranteed.

These two last aspects have been discussed in detail in
the context of identification procedures based on the process
reaction curve in [36].

IV. ILLUSTRATIVE EXAMPLES
The previous section has discussed the proposed procedure
for identifying an FFOPDT model based on the process reac-
tion curve.

Model parameters are obtained by selecting two arbitrary
points (x1-x3%) on the reaction curve and exploiting the
process response’s asymptotic behavior. The latter is char-
acteristic of the response for processes exhibiting fractional
behavior.

In this section, the proposed FFOPDTmodel identification
procedure has been tested for two fractional-order process
models and a thermal process-based hardware-in-the-loop
experimental setup.

Even being a general method valid for any set of points
(x1-x3%) on the process reaction curve, without loss of gener-
ality, the set of points (10-90%), corresponding to x1 = 10%
and x3 = 90% of the process output total change, will be used
in this paper.

In this regard, the considered data sets {α, f2(α)} and
{α, f3(α)} are determined for the set of points (10-90%)
using the values of the corresponding normalized times
{τ10, τ90}, for 0.50 ≤ α ≤ 1.00.
The following rational functions have been used for curve

fitting of functions f2(α) and f3(α), respectively:

f2(α) =
p1α + p2

α2 + q1 + q2
, (30)

f3(α) =
p1α2

+ p2α + p3
α2 + q1 + q2

, (31)

Figure 4 shows data sets {α, f2(α)} and {α, f3(α)} and
curves obtained by least-squares fitting using the Levenberg-
Marquardt algorithm. The corresponding parameter val-
ues {pi, qi} for functions f2(α) and f2(α) are shown in
Table 2.

The numerical values of f2 and f3, which depend on the
value of α that has been estimated, can be incorporated into
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FIGURE 4. a) Data set {α, f2(α)} and function obtained by curve fitting for
set of points (10-90%); b) Data set {α, f3(α)} and function obtained by
curve fitting for set of points (10-90%).

eq. (28) in order to determine time-based parameters {T , L}.
Note that the determination of the model parameters K and α

is independent of the points x1 and x3 selected on the process
reaction curve.

The selection of these values of x1 and x3 has been made
taking into account that the accuracy of the identified model
improves the larger the distance between x1 and x3, particu-
larly in the interval [x1 − x3]. More specifically, the influence
of the position of the representative symmetrical points on the
accuracy of the identified model is treated in detail in [37].
Finally, the accuracy of the identified model needs to be

evaluated. The mean squared error (MSE) is used as the
time-domain fitting criterion to measure the performance of
the identified model:

S(θ ) =
1
NS

NS∑
k=1

[e(kTS , θ)]2

=
1
NS

NS∑
k=1

[y(kTS ) − ym(kTS , θ)]2, (32)

where TS is the sampling period, NS is the number of samples
collected, NSTS is the time duration of the dynamic response,
θ is the vector of process model parameters, and e(kTS , θ )
is the difference between the process reaction curve and the
step response of the identified model, y(kTS ) and ym(kTS , θ ),
respectively.
Remark 7: Note that the simulation results of Examples 1

and 2 have been implemented using MATLAB and the FOTF
(Fractional Order Transfer Function) toolbox.

FOTF is a toolbox that extends many built-in MATLAB
functions to deal with fractional-order systems and has been
developed byXue and collaborators [53]. Example 3 has been
developed using LabVIEW, see [39]. In both MATLAB and
LabVIEW, the numerical computation of the fractional-order
models and step responses has been performed using the

TABLE 3. Process information required for FFOPDT model identification
of process P1 using the proposed method.

Grünwald-Letnikov definition for the fractional-order deriva-
tive. The sampling period is TS = 0.01 s for Examples 1 and
2 and TS = 0.1 s for Example 3. The number of samples NS
for each example is given in Tables 5, 9, and 13.

This section is organized as follows. First, two examples
with higher-order fractional process models are used to com-
pare the effectiveness of the proposed identification method
with other well-known identification methods. Next, a ther-
mal process-based hardware-in-the-loop experimental setup
is used to verify the proposed identificationmethod’s applica-
bility and test the identification algorithm’s implementation
on microprocessor-based industrial hardware. Finally, a dis-
cussion of the obtained results is presented.

A. EXAMPLE 1
In this example, a higher-order lag-dominated fractional-
order process model is selected:

P1(s) =
K1

3∏
i=1

(1 + Tisα1 )

, (33)

where K1 = 3, T1 = 1 s, T2 = 2 s, T3 = 3 s, and α1 = 0.88.
This model has been initially proposed in [33] as an

illustrative example and has also been used to verify the effec-
tiveness of the method proposed by Gude and García Bringas
in [36], which identifies FFOPDT model parameters using
three arbitrary points, both symmetrical and asymmetrical,
on the process reaction curve.

In this example, the FFOPDT model obtained using
the proposed identification method is compared with those
obtained using other well-known identification methods.

The step signal applied to the considered process P1 as
an open-loop test and the corresponding process reaction
curve obtained for this fractional-order model are depicted in
Fig. 5. Table 3 summarizes the process information required
to identify the FFOPDT model with the proposed method
considering the set of points (10-90%).

Figure 6 illustrates the step response of the estimated
model using the proposed identification method and the cor-
responding process reaction curve.

Additionally, process (33) has also been approximated
using several integer- and fractional-order models. More
specifically, it has been approximated using an FFOPDT
model obtained with the identification procedure described
by Gude and García Bringas in [36] for the symmetrical
(10-50-90%) and asymmetrical (10-55-90%) set of points,
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FIGURE 5. Process information required for the identification of the
FFOPDT model: Step signal and reaction curve for process P1.

TABLE 4. FFOPDT model parameters obtained for process P1 with the
different identification methods considered (j = 1, . . . , 5) and optimal
parameters obtained for an FOPDT model (j = 6).

the FFOPDT model obtained with the method followed by
Tavakoli-Kakhki in [33], using an FFOPDT model deter-
mined with the optimization-based procedure described by
Guevara et al. in [31], and using an optimal FOPDT model.
The model parameters θ1,j = {K1,j,T1,j,L1,j, α1,j} for j =

1, . . . , 6, corresponding to the above methods, are shown in
Table 4.
In order to evaluate the accuracy of the different identified

models, the time-domain model performance index values
S(θ1,j) for the models obtained with the considered identi-
fication methods (j = 1, . . . , 6) applied to process P1 are
shown in Table 5. The values of the relative performance
index S1,j = S(θ1,1)/S(θ1,j) for the models obtained using
the different methods (j = 1, . . . , 6) compared to the one
for the proposed method (j = 1) are shown in Table 6 and
illustrated in Fig. 7. This figure shows that the proposed
method reduces by 37%, 25%, 40%, 29%, and 71%, the value
of S to methods proposed by Gude for a symmetrical set of
points (10-50-90%) and for an asymmetrical set of points
(10-55-90%), by Tavakoli-Kakhki, by Guevara et al., and for
optimal FOPDT model, respectively.

In summary, this example shows that the proposed
method significantly improves the accuracy of the esti-
mated FFOPDT model while maintaining the simplicity of
the procedure compared to other well-known identification
methods.

FIGURE 6. Process reaction curve for the considered process P1 and
FFOPDT model step response using the proposed identification procedure
for (10-90%). Representative points x1 = 10% and x3 = 90% on the
process reaction curve are also displayed. The figure shows that the step
response of the FFOPDT model obtained with the proposed method
accurately fits the process reaction curve.

TABLE 5. Performance indexes obtained with the model obtained using
the proposed method and the ones with several methods based on the
process reaction curve for process P1.

TABLE 6. Relative performance indexes obtained with different
identification methods (j = 1, . . . , 6) in comparison with the proposed
method (j = 1) for process P1. The improvement obtained by using the
proposed method is also illustrated in this table.

B. EXAMPLE 2
In this example, the following higher-order lag-dominated
fractional-order process model is selected:

P2(s) =
K2

(1 + T2sα2 )n
, (34)

where K2 = 2, T2 = 1 s, n = 5, and α2 = 0.85.
This model has been proposed in [33] as an illustrative

example and has also been used to verify the effectiveness
of the methods proposed by Gude and García Bringas in
[37], which identifies the FFOPDT model parameters using
three symmetrical points on the process reaction curve, and

103224 VOLUME 11, 2023



J. J. Gude et al.: New Fractional Reduced-Order Model-Inspired System Identification Method

FIGURE 7. Relative performance index-based comparison between
results obtained with different identification methods (j = 1, . . . , 6) and
the one obtained with proposed method (j = 1) for process P1.

FIGURE 8. Process information required for the identification of the
FFOPDT model: Step signal and reaction curve for process P2.

TABLE 7. Process information required for FFOPDT model identification
of process P2 using the proposed method.

in [38], where the accuracy of the identified FFOPDT model
is improved by moving the central point x2 on the process
reaction curve. In this example, the FFOPDT model obtained
using the proposed identification method is compared with
those obtained with other well-recognized identification
methods.

Figure 8 depicts the step-input signal of an open-loop
test applied to process P2 and the process reaction curve.

TABLE 8. FFOPDT model parameters obtained for process P2 with the
different identification methods considered (j = 1, . . . , 6).

TABLE 9. Performance indexes obtained with the model obtained using
the proposed method and the ones with several methods based on the
process reaction curve for process P2.

The process information required to identify the FFOPDT
model with the proposed method considering the set of points
(10-90%) is summarized in Table 7.

The step response of the proposed FFOPDT model is
compared with the reaction curve in Fig. 9. Process P2 has
also been approximated using an FFOPDT model obtained
with the identification procedure described by Gude and
García Bringas [37] for the set of symmetrical points (10-50-
90%), the model obtained with the identification procedure
proposed by Gude [38] for the set of asymmetrical points
(10-65-90%), and the models obtained by applying three
strategies proposed by Tavakoli-Kakhki [33].

Table 8 shows the parameters of the FFOPDTmodel θ2,j =

{K2,j,T2,j,L2,j, α2,j} for j = 1, . . . , 6, corresponding to the
above methods.

Table 9 shows the values of the time-domain model per-
formance index S(θ2,j) for the models obtained with the
considered identification methods (j = 1, . . . , 6) applied to
process P2.
The values of the relative performance index

S2,j = S(θ2,1)/S(θ2,j) for the models obtained using the
different methods (j = 1, . . . , 6) compared to the one for
proposedmethod (j = 1) are shown in Table 10 and illustrated
in Fig. 10.

This figure shows that the model obtained with the pro-
posed method presents the same accuracy as the one obtained
with the method proposed by Gude for the asymmetrical set
of points (10-65-90%) and reduces by 35%, 74%, 85%, and
56% the value of S with respect to the models obtained with
the method proposed by Gude for the symmetrical set of
points (10-50-90%), and the ones obtained using the three
strategies proposed by Tavakoli-Kakhki, respectively.

To conclude, this example also demonstrates that the pro-
posed method provides a significant improvement in the
accuracy of the estimated fractional-order model. Simplicity
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FIGURE 9. Process reaction curve for the considered process P2 and
FFOPDT model step response using the proposed identification procedure
for (10-90%). Representative points x1 = 10% and x3 = 90% on the
process reaction curve are also displayed. The figure shows that the step
response of the FFOPDT model obtained with the proposed method
accurately fits the process reaction curve.

FIGURE 10. Relative performance index-based comparison between
results obtained with different identification methods (j = 1, . . . , 6) and
the one obtained with proposed method (j = 1) for process P2.

and effectiveness of the proposed procedure compared to
other well-known identificationmethods are also remarkable.

C. EXAMPLE 3
This section uses a thermal process-based hardware-in-the-
loop experimental setup that has recently been conceived and
built and is used [39].

The controlled process in the apparatus consists of the
thermodynamic temperature process in a 3D-printer extruder
head, which is inside a methacrylate duct, and with an air fan
installed in front of the hot end.

Figure 11 shows a picture of the experimental prototype
detailing the different heat transfer forms in the extruder head.

TABLE 10. Relative performance indexes obtained with different
identification methods (j = 1, . . . , 6) in comparison with the proposed
method (j = 1) for process P2. The improvement obtained by using the
proposed method is also illustrated in this table.

FIGURE 11. Picture of the experimental prototype and detail of the
thermal-based process in the extruder head.

FIGURE 12. Scheme of the experimental setup, including the prototype
configured with Controlled Process Configuration #1 and the
microprocessor-based hardware architecture for implementation of
fractional-order model identification algorithms. The local PC, where the
graphical user interface is implemented, is also depicted in the figure.

The control hardware can control the air fan and the heating
power of the resistance inside the extruder head. Thus, the
controlled process can be configured to control the tempera-
ture in the heat block under different configurations. For this
paper, configuration #1, which uses the heating resistor as the
final control element while the air fan speed is kept constant,
will be the selected configuration.

In this work, the control hardware architecture proposed in
[54] is used for the implementation of the FFOPDT model
identification algorithm proposed in the previous section.

For a more detailed description of this laboratory equip-
ment, the conceptualization and the potential advantages of
this hardware architecture over other available alternatives
for the implementation of integer- and fractional-order model
identification algorithms, the reader is referred to [39].

Figure 12 schematizes the experimental setup. It consists of
the prototype, which shows the block diagram corresponding
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FIGURE 13. Input signals for experimental open-loop step test: control
signal to the heating resistance uH (t) [%] and command signal to air fan
uF (t) [%]. Experimental setup is configured with Controlled Process
Configuration #1.

FIGURE 14. Output signal for open-loop step test: Process reaction curve
Tm(t) [oC ]. Experimental setup is configured with Controlled Process
Configuration #1.

to the selected configuration of the controlled process, the
hardware device, where the proposed identification algorithm
is implemented, and the local PC, where the graphical user
interface is displayed.

The experimental procedure to determine process data
required to estimate an FFOPDT model consists of a typical
step-input experimental test.

Initially, a step-input signal of magnitude 1uH = 30%
is applied to the heating element, while the command signal
to the fan uF is kept constant (uF = 10%), as illustrated in
Fig. 13. The process reaction curve Tm at this operating point
shows a variation of1Tm = 42oC (from 60.5oC to 102.5oC),
as shown in Fig. 14.

Table 11 shows the process information required to esti-
mate K , T and L model parameters, while α parameter is
estimated by using the process reaction curve Tm(t).

TABLE 11. Process information required for FFOPDT model identification
of the experimental controlled process using the proposed method with
set of points (10-90%).

TABLE 12. FFOPDT model parameters obtained for the experimental
controlled process using the proposed identification procedure with set
of points (10-90%), and the ones obtained using the identification
method proposed in [38] considering x1 = 10% and x3 = 90% and
moving the location of x2, i.e., (10-50-90%) and (10-65-90%).

TABLE 13. Time-domain model performance indices S(θ3,j ) for the
experimental controlled process considering different identification
methods.

Table 12 presents the FFOPDTmodel parameters obtained
for the thermal-based process at the considered operating
point using the proposed identification method with set of
points (10)-90%). The parameters of the FFOPDT models
obtained by the identification method proposed by Gude in
[38] for symmetrical and asymmetrical set of points have also
been included in this table.

Next, the process reaction curve is compared with the
step response of the corresponding FFOPDT model with the
proposed method in Fig. 15.
This figure also show the corresponding representative

points on the process reaction curve.
Table 13 shows the values of the time-domain model per-

formance index S(θ3,j) for the different identification meth-
ods (j = 1, 2, 3) applied to the experimental thermal-based
controlled process. The values of the relative model perfor-
mance index S3,j = S(θ3,1)/S(θ3,j) are shown in Table 14 and
graphically illustrated in Fig. 16. Although it has been shown
in [36] that the symmetrical and asymmetrical methods give
good resuls, this figure shows that the model obtained with
the proposed method reduces by 10% and 7% the value
of S with respect to the models obtained with the method
proposed by Gude and García Bringas, for the symmetrical
(10-50-90%) and asymmetrical (10-65-90%) set of points,
respectively.

D. DISCUSSION
In this section, several examples have been used to illus-
trate the effectiveness and applicability of the proposed
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FIGURE 15. Process reaction curve Tm(t) [oC ] and FFOPDT model step
response using the proposed identification method for (10-90%).
Representative points x1 = 10% and x3 = 90% on the process reaction
curve are also displayed. The accuracy of the identified model is
remarkable in the figure.

FIGURE 16. Model performance index values S(θ3,j ) obtained with
methods #1–3 for the experimental controlled process.

TABLE 14. Relative performance indexes obtained with different
identification methods (j = 1, 2, 3) in comparison with the proposed
method (j = 1) for thermal-based process P3. The improvement obtained
by using the proposed method is also illustrated in this table.

identification method. On the one hand, the first two exam-
ples demonstrate the effectiveness of the proposed identifica-
tion method compared to other methods for fractional-order
models. On the other hand, the third example allows verify-
ing the applicability of the proposed identification method
by implementing the proposed identification algorithm on
microprocessor-based control hardware and applying it to a
thermal-based experimental setup.

The identification method proposed in this paper is com-
pared with the following identification procedures. The
potential advantages of the proposed identification method
are treated below, providing a discussion on the comparison:

1) The integral-based method followed by
Tavakoli-Kakhki [33] is a pioneering method in esti-
mating FFOPDT model parameters and is used in
numerous studies as a reference method for compar-
ing new identification proposals. In this reference,
three different strategies are proposed to determine
the parameters of the fractional-order model. Given
that the model parameters K and α obtained using
the proposed method are identical to those proposed
by Tavakoli-Kakhki, Examples 1 and 2 show that the
superiority of the proposed method is due to a more
accurate estimation of parameters T and L. In this
regard, the estimation of T and L using Tavakoli-
Kakhki’s method is based on numerical computation of
the fractional-order integral of a given function, in con-
trast, the one of the proposed method is analytical.
Similar integral-based methods have been proposed
by Tavakoli-Kakhki and co-workers in [34] and [35].
These methods are characterized by their efficiency in
the presence of measurement noise. The same conclu-
sions can be obtained with the latter methods as those
obtained by comparing the proposed method with [33].
Both the method proposed in this paper and the meth-
ods proposed by Tavakoli-Kakhki describe the dynam-
ics of processes having an S-shaped step response using
the FFOPDT model with order α ≤ 1.0.

2) Gude and García Bringas proposed different FFOPDT
model identification procedures based on fitting three
points on the process reaction curve [36], [37], [38].
For the sake of fairness in comparison, the symmetrical
and asymmetrical procedures proposed by Gude and
García Bringas used for the comparison also employ
x1 = 10% and x3 = 90% points on the reaction curve,
as does the proposed method.
Note that the proposed method is general for any arbi-
trary values of x1 and x3 on the reaction curve.
In the context of FFOPDT model identification meth-
ods based on fitting three points on the process reaction
curve, [37] establishes that the step response of the
identified model provides a good fit with the process
reaction curve, especially in the interval [x-(100− x)],
with x1 = x and x3 = 100− x. Correspondingly, it can
be suggested for the proposed method that a longer
[x1 − x3] interval allows the model to better fit the
process reaction curve, which results in a lower value
in the model performance index S.
The following conclusions can be drawn from com-
parative analysis of the previous methods proposed by
Gude and García Bringas with the one proposed in this
work:

• The method presented in this paper is pro-
posed within the same framework as the methods
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proposed in [36], [37], and [38], providing a more
accurate estimation of the FFOPDT model.

• Since model parameters T and L depend on the
location of points x1 and x3, the model improve-
ment obtained by the proposed method results
from a more accurate estimation of α.

• Therefore, the efficiency and simplicity of imple-
mentation, which are key aspects in industry and
characterize the previous methods proposed by
Gude and García Bringas, are maintained in the
current proposal.

3) The method proposed by Guevara et al. [31] deals
with the identification of FFOPDT model parame-
ters using an optimization-based method. The criterion
applied is the minimization of the integral of the abso-
lute error, which is the difference between the model
step response and the process reaction curve. This
method is applicable to processes with overdamped or
underdamped step responses, i.e., characterized with a
fractional order 0.0 ≤ α ≤ 2.0 that can be estimated
from the process reaction curve.
Regarding the comparison of this method with the
proposed method, Example 1 shows that the analytical
methods (proposed, symmetrical, and asymmetrical)
can provide results as good as or even better than
those obtained by the optimization-based methods.
Optimization-based methods are generally more com-
plicated and require a higher computational effort than
analytical methods.
Note also that the approximation of the fractional part
of the model is performed in Guevara’s method by
applying the CRONE approach, see [55], while the
Grünwald-Letnikov definition is used in the proposed
method for numerical computation of fractional-order
derivatives.

4) Numerous methods for identifying integer-order mod-
els have been presented in the introduction. However,
only the optimal FOPDT model has been used in the
illustrative examples in Section IV. Note that the cost
function used to obtain the optimal model is (32), there-
fore, the FOPDT model obtained will be the one with
a lower S value.
Moreover, the superiority of fractional-order mod-
els over integer-order ones to identify processes with
fractional behavior is well-known in the technical lit-
erature, see, e.g., [36], [37], and [39]. This can also be
verified in Example 1.

V. FUTURE WORKS
In the context of the work presented in this paper, the follow-
ing can be included as research lines and future work:

• The identification method proposed in this work is
restricted to fractional order values in the range
0.5 ≤ α ≤ 1.0, and as future work we pro-
pose to develop this identification method using the

samemethodology for processes with underdamped step
response, extending the fractional order range to 1.0 ≤

α ≤ 2.0.
• In this work, microprocessor-based hardware has
been used for the implementation of the proposed
fractional-order identification algorithm, which has ver-
ified its applicability in an industrial environment.
As future work, it is proposed to implement this iden-
tification procedure in hardware devices such as PLCs,
which are undoubtedly the workhorse of the process
industry.

VI. CONCLUSION
This paper presented a new FFOPDT model identification
method to characterize the dynamic response of a systemwith
an S-shaped step response.

The results of the examples used in this work show this
procedure’s effectiveness in identifying fractional-ordermod-
els. The applicability of the proposed analytical procedure
and the simplicity of implementation on industrial hardware
and applied to a thermal-based laboratory prototype is also
shown.

We believe that this type of identification procedure,
in which simplicity is the main feature, will encourage the
adoption of fractional-order models and their practical appli-
cation in the process industry.
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