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A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

University of Deusto

for Doctoral Program in Computer and Telecommunication Engineering

November 2015

http://www.deusto.es
rizwanishaq@gmail.com
mbgarciazapi@deusto.es
http://www.deustotech.es
http://www.deusto.es




Declaration of Authorship

I, Rizwan Ishaq, declare that this thesis titled, ’Enhancement of Esophageal Speech

using Signal Processing algorithms on Source Signal and Vocal Tract Filter’ and the

work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i





“Learn to Fail, Fail to learn.”





Abstract

The speech an essential component for daily life communication sometimes alter due to

laryngeal cancer treatment. The advanced stage treatment for laryngeal cancer is total

laryngectomy. The one of the consequences of total laryngectomy is that normal speech

production destroyed and alternative speech production are needed. The Esophageal

Speech (ES) is one of the alternative speech production method after total laryngectomy.

The ES uses esophagus as an alternative to larynx, and the air source comes from mouth

to the lower esophagus, and then release back which vibrates the esophagus and provides

voicing source to the vocal tract filter. The produced speech by this method has low

quality and low intelligibility due to irregular voicing source and altered vocal tract

filter. This thesis, therefore presents an enhancement method for ES by transforming the

source and vocal tract filter components into normal speech components. The system

in the thesis, first decompose the ES into source and vocal tract filter components

using Iterative Adaptive Inverse Filtering (IAIF), and then transforms these components

into normal speech components. The source most effected, is first decomposed into

fundamental frequency F0 curve, Harmonic to Noise Ratio (HNR) and source spectrum

components. The natural glottal pulse computed from nomral speech is used with normal

speech F0 curve and HNR along with original source spectrum for transformed source

signal. The vocal tract filter is transformed by smoothing the vocal tract spectral peaks,

and then shifting these spectral peaks to lower frequencies using second order Frequency

Warping Function (FWF). The spectral peaks widths are then enlarge to make it more

closure to natural speech. The system is evaluated using subjective listening tests and

objectively using HNR on the Spanish ES vowels /a/, /e/, /i/, /o/, /u/, and 28 mostly

used Spanish words. The subject listening tests using MOS and preference score have

shown that proposed system MOS always between 3 to 4, and the preference for all the

processed sample is more than 50%. The objective result using HNR has shown 10 to

15 dB improvement over the original ES samples.
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Chapter 1

Introduction

The speech is our daily source of communication, produced by modulated air source and

shaped by oral cavity. The air source comes from the lungs to the vocal folds which are

resided in larynx. The lungs and larynx are connected through trachea. The air source

forces the vocal folds to open and close depending upon the type of source. The vocal

folds are held open for the unvoiced source, while for the voiced source, it opens and

closes periodically. This voiced/unvoiced source is then spectrally shaped by oral cavity

consists of pharynx, vocal tract, and nasal cavity. The spectrally shaped voicing source

is then radiated into air by lips. In short, the essential parts for speech production are

air source, voicing source and oral cavity (vocal tract). The larynx produces the voicing

source, and considered an essential component for the speech production.

The laryngeal cancer uncommon type of cancer increased in the last few years due to

excessive use of tobacco and alcohol (although no study available among the correlation

of tobacco and alcohol use for laryngeal cancer). According to American Society [1],

there are 12,360 cases reported in USA, and 28,000 in European Union (EU) in 2012 [2].

There are treatments to laryngeal cancer, such as, chemotherapy, radiotherapy, partial

and total laryngectomy. The chemotherapy and radiotherapy are the mostly used treat-

ments in the modern age, but still the advanced stage laryngeal cancer can not be treated

with these treatments. The partial laryngectomy is sometime can help to reduces the

laryngeal cancer, but the last stage treatment of laryngeal cancer still needs total laryn-

gectomy to save the life of the patient. The larynx of the patient removed in the total

laryngectomy. The air pathway from lungs to the mouth no more available, and for the

breathing purpose, a hole on neck called stoma, created and trachea one end connected

to the stoma.The consequences of the total laryngectomy are extreme, such as, breath-

ing pathway altered, food intake effected, and the most severe is the speech production.

The larygectomee (patient who went through total laryngectomy) can not produced the

1
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speech, as the speech production essential components such as air source, and larynx are

not available. However to regain the speech production ability, the alternative methods

are used, which use different body organs as an alternative to normal speech production

organs. The alternative of larynx for the larygectomy is created using the esophagus or

external devices. There are three mostly used method for speech regaining after total

laryngectomy, i) Esophageal Speech (ES), Tracheo-Esophageal Speech (TES), and Elec-

trolarynx (EL). The ES and TES both use the Pharyngo-Esophagus Segement (PES) in

esophagus as voicing source or alternative to larynx. Although ES and TES both use the

same voicing source, the air source is still different for each other. The air source for the

TES comes from the lungs by diverting the air from trachea to esophagus by inserting

the one way volve between trachea and esophagus. The one-way volve prevents the food

to enter into trachea. The air source however comes from the mouth by inhaling air

into the esophagus, and then exhaling the air which vibrates the PES segment for the

voicing source. The EL is the most simplest method and does not use any air source for

speech production, instead it uses external vibrating devices for voicing source.

1.1 Justification

The different speech production method have different advantages and disadvantages,

such as, the speech production using EL is the most easiest way of producing speech

for laryngectomee, but it has disadvantage of being more robotic (machine like sound),

and the use of external devices. The TES is the more closer to the normal speech, but

it needs complex surgery for inserting volve between trachea and esophagus and need

cleaning of that volves daily. The ES is the most natural way of producing speech after

total laryngectomy, despite it takes time to learn, as well the low air pressure produces

the low quality speech. The ES, therefore is mostly used speech production method

after total laryngectomy, because it does not require surgery as in TES, and external

devices as in EL. Despite the preferred method, the ES has the following deficiencies in

comparison to natural speech, i) the air source from the mouth has low air pressure ii)

the irregular shape of PES and low air source pressure generates irregular voicing source,

iii) the vocal tract also effected due to total laryngectomy, i.e. shortening of vocal tract.

Due to these deficiencies, the produced speech has low intelligibility and quality. The

speech almost sounds like a burp. In a sense of speech components, the ES has low

fundamental frequency, almost no harmonics in voicing source and corresponds whisper

speech voicing source, and vocal tract spectral peaks are moved higher in the frequency.

The produced speech needs special algorithms for enhancing its intelligibility, which

transform the voicing source and vocal tract filter into natural speech components. In

order to address these problems of ES, special signal processing algorithms are needed
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which transform the ES speech in to almost normal speech. This thesis therefor uses the

signal processing algorithms for decomposing the ES into source and filter components

and then transforms these components into normal speech components for better and

intelligible speech, which make the life of laryngectomee easy. The speech signal pro-

cessing industry have not put effort on this type of speech signals, so this thesis hence

provided the algorithms to speech signal processing industry to make the speech coders

for this type of speech signals for the betterment of the life of the laryngectomee.

1.2 Hypothesis

It is possible to enhance the intelligibility and quality of low quality ES

using the signal processing algorithms, which transforms the ES source

and filter components to the normal speech source and filter components

using the natural glottal pulse and Frequency Warping Function (FWF).

To deal with transformation of ES source and filter components into natural speech

components, this thesis uses source-filter theory of speech production [3], which describes

the speech as the combination of source and filter. The thesis assumes that ES can be

faithfully decomposed into its source and filter components according to [3]. After

decomposition these components are processed independently. The source components

are transformed into natural speech components by borrowing natural glottal pulse,

while the filter components are transformed into natural filter components using the

frequency warping function.

1.3 Objectives

The overall objective of this thesis is to enhance the ES quality and intelligibility by

transforming the ES source and filter components into normal speech source filter com-

ponents. The following are the main objectives addressed and solved in this thesis;

• Build a high quality pathology speech database for experimentation

• Design a method for decomposing ES into source and vocal tract components.

• Design a new algorithm for transforming the ES source signal into normal speech

source signal.
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• Design a novel algorithm for transforming the ES vocal tract filter into normal

speech vocal tract filter.

• Evaluate the quality of enhanced ES subjectively and objectively.

The first step in enhancing the ES is to decompose the ES into its source and filter com-

ponents, which is done by automatic inverse filtering method Iterative Adaptive Inverse

Filtering (IAIF) [4]. After analyzing the source and filter components, the problems of

ES source and filter are solved by transforming them into normal speech source-filter

components. For this purpose, separate algorithms are designed for source and filter.

The source is transformed using the natural glottal pulse extracted from the normal

speech, while the filter is transformed using the Frequency Warping Function (FWF),

which solves the deficiencies of ES filter. At the end the transformed source and filter

components are synthesized for enhanced better quality ES. The proposed algorithms

are assessed using the subjecting listening tests, and objectively using Harmonic to Noise

Ratio (HNR). The spectrogram is also used to assess the system visually.

1.4 Structure of Thesis

The thesis structure is as follows;

• Chapter 1 provided the introduction of the thesis.

• Chapter 2 presented the background study and state of the art review related to

the ES in detailed.

• Chapter 3 then provided the proposed system to address the problem of ES by

decomposing the ES into source and filter components and then transforming

these components into normal speech components. The source signal is modified

using the natural glottal pulse, and the vocal tract filter is transformed using the

Frequency Warping Function (FWF).

• Chapter 4 evaluated the proposed system, and presented the results.

• Chapter 5 then concluded the thesis and presented the future lines for the proposed

system.
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State of the Art Review

Before going into detail of ES speech production method, it is necessary to first explain

the natural speech production mechanism, and then describe the ES in comparison to

natural speech. This chapter first describes the the natural speech production mecha-

nism, and then in comparison to natural speech production ES production methods is

introduced.

2.1 Speech Production Methods

2.1.1 Natural Speech

The natural speech production mechanism can be divided into following essential com-

ponents (Figure 2.1):

• Lungs

• Larynx

• vocal tract

The primary purpose of lungs is to provide the air source to the larynx for voicing

source. The larynx and lungs are connected through trachea, and air passes through

trachea to larynx. The larynx has the vocal folds. The air source pressure from lungs

forces the glottis in vocal folds to open and close depending on the type of phonation.

In voiced phonation, air source, modulated by opening and closing of glottis, provides

periodic source signal, while for unvoiced phonation, glottis held open, and the source

signal corresponds to noise signal. The source signal then passed through the vocal tract.

5
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The vocal tract consists of pharyngeal, oral, and nasal cavities and shaped the source

signal using spectral resonance and anti-resonance (Figure 2.1). Finally, the spectrally

shaped source (glottal) signal radiated into air through lips or nose. For the convinces,

the modulated air source, through larynx, is called, glottal source, or voicing source,

and the combination of oral, pharynx and nasal cavities considered as the vocal tract.

The glottal source, a main component for the phonation, provides the voiced source, i.e.

quasi-periodic vibration of glottis, and unvoiced source, when the glottal source is noisy.

In comparison to natural speech production, the speech after total laryngectomy, uses

different organs for production. The Figure 2.2 shows the difference between laryngec-

tomee and non-laryngectomee organs. The larynx is missing, and the air source from

lungs do not pass through the vocal tract, instead larygectomee breath through the hole

on the neck called stoma. The equivalence of vocal folds, and air source are needed

for speech restoration. The esophagus and external devices are used for this purpose.

Two methods, Esophageal Speech (ES), and Tracheo-Esophageal use esophagus for voic-

ing source generation, with a different air source. Electrolayrnx (EL) uses the external

devices, without any air source for voicing source.

2.1.2 Electorlarynx (EL)

The EL uses the external vibrating device for voicing source for speech production.

The EL does not use any air source for voicing source. Figure 2.3 shows the EL

speech production process. The external vibration device is placed against the neck,

and vibration of device provides the voicing source. EL is a easiest method for speech

restoration after total laryngectomy, but it sounds robotic.

2.1.3 Treacheo-Esophageal Speech (TES)

The another type of speech production method after total laryngectomy which uses the

esophagus as shown in Figure 2.4. The Paryngeo-esophagus (PE) segment in esophagus

is used as a voicing source generator. The air source from lungs is diverted to the

esophagus using the one way valve inserted between trachea and esophagus by surgery.

The vibration of PE segment provides the voicing source to the vocal tract for speech

signal. TES is more closer to the natural speech production, because the air source

pressure from lungs is higher. The problem with TES is that it requires surgery, and

continues cleaning of valve, inserted for air diverting to esophagus.
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Figure 2.1: Speech production organs (adapted from [5])
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Figure 2.2: Organs before and after total laryngectomy (adapted from [6])

Figure 2.3: Electrolaryx speech production (adapted from [7])
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Figure 2.4: Treacheo-Esophageal Speech production (TES) (adapted from [7])

2.1.4 Esophageal Speech (ES)

Esophageal Speech (ES) is another speech restoration method used after total laryngec-

tomy. The speech production process for ES is similar to TES, the difference is only the

air source. To avoid the surgery, ES uses a air source by inhaling air through mouth

to the lower part of esophagus, and then exhale back, which vibrates the PE segment,

and provides a voicing source for speech production as shown in Figure 2.5. Although

ES air source pressure is low as compared to TES, but it is preferred method because it

does not need any surgery or external devices for source generation [8].
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Figure 2.5: Esophageal Speech (adapted from [8])

2.2 Speech Modeling

As this thesis only deal with ES, therefore ES will be discussed in a sense of natural

speech production. The air source for normal speech comes from lungs, but for ES it

comes from mouth by inhaling air. The neo-glottal in PE segment, vibration provides

voicing source, while in normal speech glottis in vocal folds are used for this purpose. The

vocal tract is considered similar to that of normal speech. So the ES can be modeled as

the linear source-filter model of speech production [3]. The speech production mechanism

is a complex and non-linear process, but the speech can be modeled using the linear

source filter model for the short length frames of speech (i.e. 30-ms) based on that

vocal tract and source of speech are independent and decomposable. Therefore, based

on simple assumption of source and vocal tract separability, short segment of speech
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is considered as the output of Linear Time Invariant (LTI) system, whose input is the

source signal [3] (Figure 2.6). Based on this LTI system of speech production [3] shown

Linear Time Invariant (LTI) systemSource Speech

Filter

Figure 2.6: Linear Time Invariant (LTI) system

in Figure 2.7, the speech signal s[n] is convolution of source signal, vocal tract, and lip

radiation.

s[n] = g[n] ∗ v[n] ∗ r[n] (2.1)

where g[n], v[n], r[n] and ∗ are source signal, vocal tract, lip radiation and convolution

operator, respectively. In z-domain;

S(z) = G(z)V (z)R(z) (2.2)

where G(z), V (z), R(z), and S(z) are the transfer functions of g[n], v[n], r[n] and s[n],

respectively. The source signal for voiced speech in ES is consists of periodic impulses

Source model
G(z)

White noise

X

X

+ Vocal tract
V (z)

Lip radiation
R(z)

p[n]

G

G

s[n]
g[n]

Figure 2.7: The source-filter model of speech for voiced and unvoiced speech

p[n] provided by vibration of Pharyngo-esophagus (PE) segment, and filtered by the

source model, and for unvoiced speech it is white Gaussian noise. The vocal tract is an

all-pole model of voiced speech, and the lip radiation is differential filter.
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2.2.1 Speech components

2.2.1.1 Lip radiation

The microphones measure the speech as pressure waves, and most of them operate in the

far filed, and the lip radiation influenced the speech signal. Therefore the lip radiation

is also present in the speech signal and acoustically it is approximated with first-order

difference filter;

R(z) = 1− αz−1, 0.96 < α < 1 (2.3)

where α is a radiation constant. The frequency response and corresponding pole of the

filter is shown in Figure 2.8.
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Figure 2.8: Lip radiation frequency response and its correspond pole for α = 0.99

2.2.1.2 Vocal tract

The vocal tract an essential component for speech production, can be divided into three

main parts i) pharynx, ii) oral cavity, and iii) nasal cavity. The Figure 2.9 shows

the vocal tract in term of cylindrical tube of varying cross-section [9, 10]. Typically,

the vocal tract has the length of around 17 cm for adult male, and 14 cm for female.

Acoustically, the vocal tract is modeled by formants (poles) and anti-formants (zeros).
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For the simplicity, most of the voiced sound can be modeled by all-pole model, only

some nasal sound introduced zeros in the sound. Hence for simplicity, it can be modeled

as an all-pole model;

V (z) =
1

1 +
∑P

k=1 akz
−k (2.4)

where ak are the all-pole models prediction coefficients of order P for vocal tract V (z).

Following assumptions are needed for all-pole modeling of vocal tract to be valid [11];

• tube cross-sectional area is considered constant

• there is no air turbulent within tube

• glottis and vocal tract are linearly separable

The linear prediction coefficients of vocal tract V (z) can be approximated by different

methods. Some of them are given below.

Figure 2.9: Vocal tract (adapted from [12])

2.2.1.2.1 Linear Prediction Coding (LPC)

The Linear Prediction of speech signal is commonly used method for speech signal

processing, used for estimating speech parameters, such as, pitch, formant frequencies,

vocal tract filter etc. The method initially developed for speech coding, but afterward it
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has been used extensively, for speech analysis, recognition, enhancement etc. The basic

idea of linear prediction is that, a current speech sample is linear combination of past

speech samples [13, 14]. According to linear prediction,

ŝ[n] ≈
P∑

k=1

aks[n− k] (2.5)

where ak are the linear prediction coefficients of order P . In order to find the prediction

coefficients, the error between s[n] and estimated signal ŝ[n] is calculated as;

e[n] = s[n]− ŝ[n] = s[n]−
P∑

k=1

aks[n− k] (2.6)

The prediction coefficients are estimated by minimizing the mean square error over a

short segment of speech signal;

ε =

N∑

n=1

e[n]2 (2.7)

ε =

N∑

n=1

(s[n]− ŝ[n])2 (2.8)

ε =

N∑

n=1

[s[n]−
P∑

k=1

aks[n− k]]2 (2.9)

where N is the segment length. The error is minimized by setting ε derivative to zero

with respect to ak;

∂ε

∂ai
= 0, i = 1, 2, 3, . . . , P (2.10)

N∑

n=1

2{s[n]−
P∑

k=1

aks[n− k]}[−s[n− i]] = 0 (2.11)

N∑

n=1

s[n]s[n− i]−
N∑

n=1

P∑

k=1

aks[n− k]s[n− i] = 0 (2.12)

P∑

k=1

ak

N∑

n=1

s[n− k]s[n− i] =
N∑

n=1

s[n]s[n− i], for i = 1, 2, 3, . . . , P (2.13)

The autocorrelation function is given as;

φ[k] =
N∑

n=1

s[n]s[n+ k] (2.14)
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Inserting autocorrelation function, the equation become;

P∑

k=1

akφ[k − i] = φ[i], for i = 1, 2, 3, . . . , P (2.15)

a1φ[0] + a2φ[1] + a3φ[2] + . . .+ aPφ[P − 1] = φ[1] (2.16)

a1φ[1] + a2φ[0] + a3φ[1] + . . .+ aPφ[P − 2] = φ[2] (2.17)

a1φ[2] + a2φ[1] + a3φ[0] + . . .+ aPφ[P − 3] = φ[3] (2.18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = . . . (2.19)

a1φ[P ] + a2φ[P − 1] + a3φ[P − 2] + . . .+ aPφ[0] = φ[P ] (2.20)

In matrix form;




φ[0] φ[1] . . . φ[P − 2] φ[P − 1]

φ[1] φ[0] . . . φ[P − 1] φ[P − 2]

. . . . . . . . . . . . . . .

φ[P − 1] φ[P − 2] . . . φ[1] φ[0]







a1

a2
...

aP




=




φ[1]

φ[2]
...

φ[P ]




(2.21)

in simplified form it is;

φ~a = ~φ0 (2.22)

The linear prediction coefficients are then given as;

~a = φ−1 ~φ0, ~a = [a1, a2, . . . , aP ] (2.23)

where φ and ~φ are autocorrelation matrix and vector, respectively.

2.2.1.2.2 Weight Linear Prediction (WLP)

Another method to estimate the vocal tract coefficients [15], is similar to linear predic-

tion, but with a weighting function, to focus on the close phase estimation. The only

different between linear prediction and weighted linear prediction is the energy function;

ε =

N∑

n=1

[s[n]−
P∑

k=1

s[n− k]]2W [n] (2.24)

where W [n] is a weighted short time energy function and is given as [15, 16];

W [n] =
M∑

k=1

s2[n− k] (2.25)
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where M is the number of samples for energy estimation. Solving ε give the desired

prediction coefficients.

2.2.1.2.3 Stabilized Weighted Linear Prediction (SWLP)

The WLP which compute the all-pole model of speech using weighting window [17], and

is improved version of linear prediction all-pole model. Although the model produces

better result, but it does not guarantee the stability of all-pole model. To introduce

the stability in WLP, Stabilized Weighted Linear Prediction (SWLP) [15] is used which

modifies the weighting function so that the all-pole model guarantees stability.

2.2.1.2.4 Extended Weighted Linear Prediction (XLP)

The eXtended Weighed Linear Prediction (XLP) is another modification to WLP, where

two-dimensional weighting function is used to handle to problems of instability of all-

pole model present in WLP and LP [18]. The two-dimensional weighting function Z[n, j]

for XLP is

Z[n, j] =
m− 1

m
Z[n− 1, j] +

1

m
(|s[n]|+ |s[n− j]|), where m = 20 (2.26)

Using the Z[n, j],

P∑

k=1

ak

N∑

n=1

Z[n, k]s[n− k]Z[n, j]s[n− j] =
N∑

n=1

Z[n, 0]s[n]Z[n, j]s[n− j], 1 ≤ j ≤ p

(2.27)

The solution to above minimization of energy equation gives ak.

2.2.1.2.5 Discrete all-pole (DAP) model

The Discrete all-pole (DAP) is another method to estimate the vocal tract filter accu-

rately, which uses the Itakura-Saito (I-S) error measure instead of mean square error in

linear prediction modeling by matching the appropriate autocorrelation function [19].

2.2.1.3 Source signal

The source signal which is produced by the neoglottis in ES and by glottis in normal

speech produces different types of voicing source, depending on type of phonation. For

unvoiced phonation it is white Gaussian noise and for the voiced speech, the source
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Figure 2.10: Glottal flow (adapted from [11])

signal is consists of quasi-periodic cycles, and each cycle consist of opening and closing

phase as shown in Figure 2.10.

This one glottal cycle can be model by different source model, and simplest one is the

two-pole model [20, 21]:

G(z) =
1

1 +
∑2

k=1 αkz
−k , α1and α2 ≈ 1 (2.28)

where αk are the two real poles near to 1. According to the Figure 2.11, the glottal

flow and its derivative can be modeled using following timing instants [22];

• ts start of glottal pulse

• ti time at maximum of the glottal pulse derivative

• tp time at maximum of glottal pulse

• te time at minimum of glottal pulse derivative

• ta return phase duration

• tc glottal pulse closing time

• T0 pitch period of pulse



Chapter 2. State of the Art Review 18

Figure 2.11: Glottal flow and its derivative timing instants

2.2.1.3.1 Rosenberg source model

Based on these timing instant, Rosenberg model [22, 23] model approximates the glottal

source wave form according to following mathematical relation:

g(t) =




t2(te − t) if 0 < t < te = tc

0 if tc < t < T0

(2.29)

2.2.1.3.2 Fant source model

Another model based on two sinusoidal curves and called Fant model [22, 24] is given

accordingly:

g(t) =





1
2(1− cos(ωgt) if 0 < t < tp

K.cos(ωg(t− tp))−K + 1 if tp < t < tc

0 if tc < t < t0

(2.30)

where ωg = π
tp

, and K shape controlling parameter.

2.2.1.3.3 Liljencrants-Fant source model

One of the mostly used source model for speech signal processing is the Liljencrants-Fant

model [25], and model using the following mathematical relation:

g′(t) =




−Eeea(t−te)

sin(πt
tp

)

sin(πte
tP

)
0 ≤ t ≤ te

−Ee
εtc

(e−ε(t−te) − e−ε(t0−te)) te ≤ t ≤ t0
(2.31)
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The parameters α and ε are estimated by solving the above equation as;

∫ t0

0
g′(t)dt = 0 (2.32)

Some other methods are also available, such as Transform-LF [26] used to model the

LF model using the R parameters. The Causal-Anticausal Linear Model (CALM) [27],

modeled the source signal in spectral domain using two filters, one to modeled the open

phase using anti-causal poles pair, and return phase by causal real pole. The Klatt [28]

and Fujisaki [29] are also, but not so common.

2.2.2 Source and vocal tract decomposition

The glottal source or simply source and vocal tract decomposition is advantageous for

many speech processing application, such as, speech coding, speech synthesis, speech

recognition, etc. Both components provide different characteristics of speech signal. In

order to capture, the variation, it is compulsory to process the source and vocal tract

independently of each other.

2.2.2.1 Linear prediction source-filter decomposition

The linear prediction coding/analysis is the most used method in speech processing [14],

where the speech current samples is estimated from the past P samples accordingly;

ŝ[n] = g[n] +

P∑

k=1

aks[n− k] (2.33)

where ŝ[n] and s[n] are the estimated and original speech signal, and ak are the past

P linear prediction coefficients. The g[n] is the source signal and can be found by first

estimating the prediction coefficients ak by minimizing the prediction error as shown in

Figure 2.12.

g[n] = ŝ[n]−
P∑

k=1

aks[n− k] (2.34)

The prediction coefficients can be estimated by one of above mentioned methods such

as linear prediction coding [14], weighted linear prediction [17], its variants extended

weighted linear prediction [18], stabilized weighted linear prediction [30], discrete all-

pole [19], etc.
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1 +
∑P

k=1 akz
−1s[n] g[n]

Figure 2.12: Linear prediction analysis based source signal

2.2.2.2 Minimum/Maximum phase speech decomposition

The speech is considered as the mixed phase signal, where glottal source signal corre-

sponds to the maximum-phase of signal, and vocal tract is assumed minimum-phase of

the speech signal [31–36]. Therefore separating minimum and maximum phase parts of

speech give the source and vocal tract filter.

2.2.2.2.1 Zeros of the Z-transform

One of the method to decompose the windowed speech into its maximum and minimum

phase is Zeros of the Z-transforms (ZZT) [37]. The z-transform of the windowed speech

s[n] is given as [37];

S(z) = s[0]z−N+1
Mi∏

k=1

(z − ZC,k)
M0∏

k=1

(z − ZAC,k) (2.35)

where ZC and ZAC are the zeros outside and inside the unit circle respectively. The Mi

and Mo are number of inside and outside the unit circle zeros. The method graphically

is shown in the Figure 2.13. The roots of the S(z) are classified based on the modulus

of the roots. The roots with modulus > 1 are classified as maximum-phase components

of speech, and the roots with modulus < 1 are minimum-phase components. Based on

the roots spectrum is calculated and then IFFT is taken for the desired component of

the speech signal [37].

2.2.2.2.2 Complex cepstrum decomposition

Another methods for maximum-minimum phase decomposition is based on the complex

cepstrum of windowed speech s[n] [37], and the Figure 2.14 shows the steps. The complex
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Windowing

z-Transform

roots calculation

roots moudulus

SpectrumSpectrum

IFFTIFFT

roots with modulus < 1 roots with modulus > 1

s[n]

Maximum-phase of speechMinimum-phase of speech
Vocal tract v[n] Source signal g[n]

Figure 2.13: Zeros of z-transform (ZZT)-based decomposition (adapted from [37])
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cepstrum of s[n] is given as [38];

S(ω) =
∞∑

n=−∞
s[n]e−jωn (2.36)

log[S(ω)] = log(|S(w)|) + j∠S(ω) (2.37)

ŝ[n] =
1

2π

∫ π

−π
log[S(ω)]ejωndω (2.38)

The flow if the algorithm is as follow, the complex cepstrum can be divided into following

components based on the positive and negative index of cepstrum [37];

ŝ[n] =





|s[0]| for n = 0
∑M0

k=1
ZAC,kn

n for n < 0
∑Mi

k=1
ZC,kn

n for n > 0

(2.39)

The cepstrum correspond to maximum-phase component of signal for negative index

of cepsturm, while for positive it corresponds to minimum-phase components of the

windowed speech s[n] [37].

2.2.2.3 Iterative Adaptive Inverse Filtering (IAIF)

The IAIF 1 is a highly accurate, and simple Glottal Inverse Filtering (GIF) methods

used to decompose the input speech into its source and vocal tract components [4, 39].

The IAIF estimates the vocal tract filter and lip radiation, and then canceled these

components from the input for the highly accurate glottal source signal. According to

the [39], the input speech signal s0[n] first highpass filtered with a cutoff frequency less

than the fundamental frequency F0 (i.e. 50 Hz for ES ):

s[n] = s0[n] ∗ hhp[n] (2.40)

where hhp[n] and ∗ are highpass filter and convolution operator, respectively. Then

highpassed filter signal s[n] is inverse filtered with first order all-pole model Hg1 for

canceling lip radiation and glottal flow from the speech signal:

Sg1(z) =
S(z)

Hg1(z)
(2.41)

where Sg1(z), and S(z) are z-transform of sg1 [n] and s[n], respectively. The sg1 [n] further

used the all-pole model of order p Hvt1(z) for vocal tract estimation. The s[n] is then

1This section mostly taken from [4, 39]
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Figure 2.14: Complex Cepstrum (CC)-based decomposition (adapted from [37])

inverse filtered with Hvt1(z) for the initial estimate of glottal signal ĝ1[n]:

Ĝ1(z) =
S(z)

Hvt1

(2.42)

where Ĝ1(z) is the z-transform of ĝ1[n]. The first phase estimation of glottal signal is

done by integrating ĝ1[n]:

g1[n] = ĝ1[n] + g1[n− 1] (2.43)

where g1[n] is the first estimate of glottal source signal. The 2nd estimate of glottal

source spectrum is estimated by all-pole model of order g (typically 2 to 4) Hg2(z). The
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Figure 2.15: Iterative Adaptive Inverse Filtering (IAIF) (adapted from [39])
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s[n] is then inverse filter with this new all-pole model for glottal flow free signal sg2 [n]:

Sg2(z) =
S(z)

Hg2(z)
(2.44)

where Sg2(z) is the z-transform of sg2 [n]. The lip radiation is then canceled by integrating

sg2 [n]:

ug2 [n] = sg2 [n] + ug2 [n− 1] (2.45)

where ug2 [n] is the lip radiation and glottal source free signal. The all-pole model (of

order p) of ug2 [n] gives the glottal flow derivative signal ĝ[n] by inverse filtering the s[n]

with Hvt2(z):

Ĝ(z) =
S(z)

Hvt2(z)
(2.46)

where Ĝ(z) is the z-transform of ĝ[n]. Finally, the glottal flow g[n] is obtained by

integrating ĝ[n]:

g[n] = ĝ[n] + g[n− 1] (2.47)

The g[n] and Hvt2(z) are the glottal source and vocal tract filter of the input speech

signal s[n].

2.2.2.4 Closed phase inverse filtering

The Closed Phase Inverse Filtering (CPIF) is another method for decomposing the

speech signal into its source and filter components. The idea behind CPIF is to detect

the glottal closure and glottal opening instant [40], and then between these instants,

there is no interaction between source and filter components, i.e. source signal is absent

in this period. The signal in this period only consists of filter components, so the speech

signal modeled using Discrete All Pole (DAP) [19, 41], and then inverse filtering the

speech signal with DAP gives the desire glottal source, the DAP filter response the

desire vocal tract filter [11].

2.3 Acoustic Parameterization

2.3.1 Vocal tract parameterization

The vocal tract V (z), an all-pole model, simply given as;

V (z) =
1

A(z)
=

1

1 +
∑P

k=1 akz
−k (2.48)
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where ak are the linear prediction coefficients of order P , and can be estimated by

different prediction coefficients methods mentioned above such LP [14], WLP [17], XLP

[18], SWLP [15], and DAP [19] etc. The A(z) is the inverse filter of V (z). The prediction

coefficients can be used for further analysis by finding the roots of inverse filter A(z),

which normally are the peaks in the prediction spectrum and it represents the poles of

vocal tract, and normally can be define mathematically using this simple equation;

zi = rie
jθi (2.49)

where zi is an ith pole with ri magnitude and angle θi. The poles can be used to find

the formants frequencies and formants bandwidth.

2.3.1.1 Formant frequencies

The formant frequencies of the vocal tract calculation require angle of the poles and

given as [42, 43]:

Fi =
fs
2π
θi (2.50)

where Fi is the formant frequency for the i pole with phase θi, and fs is the sampling

frequency. In order to select the accurate estimation, roots solving is used with peak

picking from the spectrum of the vocal tract filter, as can be seen in Figure 2.16. Some

of the roots does not correspond to the formants, i.e. formants has the radius less than

the 0.90 on the unit circle, as can be seen from Figure 2.16. The formant at 217 Hz

does not correspond to the formant frequency as its radius on unit cirle is less than 0.90,

so it is discarded and shown by cross on it.

2.3.1.2 Formant Bandwidths

The bandwidths of the formant frequencies is calculate from the poles according to

following mathematical equation [42, 43]:

Bi = −fs
π
ln(ri) (2.51)

where ri is the magnitude of pole i, fs is the sampling frequency of the signal, and Bi

is the 3-dB bandwidth of formant i. The Figure 2.16 shows the bandwidths of the

formants.
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Figure 2.16: Formant frequencies and corresponding bandwidths for Spanish vowel
/a/

2.3.1.3 Vocal tract spectrum

The spectra of vocal tract filter coefficients is computed using:

H(ejω) = 20log| 1

A(ejω)
| (2.52)

where A(ejω) is given in Equation 2.48, and spectra is shown in the Figure 2.16.

2.3.2 Source signal parameterization

The source signal an important component of speech production can be further decom-

posed or parameterized into different components, which convey different information

regarding the source signal.

2.3.2.1 Time domain parameters

To exploit the pseudo-periodicity of the voiced speech for pitch synchronous processing of

the speech has advantages in many fields of speech such as speech enhancement, speech
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recognition, speech coding etc. Figure 2.17 shows the instants of glottal closure. The

difference between subsequent GCIs gives pitch period of the signal. The Glottal Closure

Figure 2.17: Glottal Closure Instant from the signal cycle of source signal with its
derivative (adapted from [44])

Instants (GCIs) are used to find the pitch contours of speech, as well the boundaries of

individual source cycle for much and better analysis and synthesis, such as source signal

estimation [45], prosodic modification of speech [46], speech dereverberation [47], and

speech synthesis [48] etc. There are some methods available in literature for GCI, such

as Hilbert envelope of source signal based [49], the Dynamic Programming Phase Slope

Algorithm (DYSPA) [50], group delay based estimation [51], Zero Frequency Resonator

(ZFR) [52], Yet Another GCI Algorithm (YAGA) [53], and the most recent one is Speech

Event Detection using the Residual Excitation and a Mean-based Signal (SEDREAMS)

[54].

The other time domain parameters which are estimated by timing instants of singla

glottal pulse as shown in Figure 2.17 are Open Quotient (OQ) [55], Speech Quotient

(SQ) [55], Closing Quotient (CIQ) [56], and amplitude based is Normalized Amplitude

Quotient (NAQ) [57].

OQ =
(t0 + tcl)

T0
(2.53)

SQ =
t0
tcl

(2.54)

CIQ =
tcl
T0

(2.55)
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NAQ =
fac

dpeakT0
(2.56)

where t0, tcl, T0 are opening timing, closing time, and fundamental period respectively.

The maximum value of source flow signal is fac and minimum of source flow derivative

is dpeak. These time domain parameters provide different aspects of source signal ,and

used for different purposes in the speech signal processing algorithms.

2.3.2.2 Frequency domain parameters

The frequency domain parameters of source signal also provide information about the

type of phonation, about its harmonicity, and its periodicity. Based on the spectrum

of source signal shown in Figure 2.18, H1-H2 difference i.e. difference between first

and second harmonics amplitude is a simple spectral decay measure of speech signal

[58]. Another parameter for glottal source is Harmonic Richness Factor (HRF) used to

quantify the spectral decay of the speech signal [59], and defined as;

HRF =

∑Nhr
i=2 Hi

H1
(2.57)

where H1 is the fundamental harmonic amplitude and Hi are next harmonics ampli-

tudes after fundamental harmonic, and i is the harmonic index. To model the spectral

slope, parabolic spectral parameter (PSP) [60], and linear regression have been proposed

[61, 62]. The modeling of source spectrum with all-pole model for spectral decay is an-

other simple measure [63]. Besides the spectral delay of the source signal, the source

Figure 2.18: Frequency spectra of source signal (adapted from [57])

signal has periodic and aperiodic components, and useful for speech modification, and

synthesis. The simplest measure for source signal quantization into periodic and ape-

riodic components is the Harmonic to Noise Ratio (HNR). The HNR is defined as the

ratio of periodic and aperiodic components of source signal. The periodic and aperiodic

components can be estimated by different methods, based on the each spectral bands

of the source spectrum such as the author in [64], calculated correlation coefficients for
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several spectral bands, which defined the aperiodic components in each spectral band.

Another method for HNR estimation is based on upper and lower smoothed spectral

envelopes [65]. The spectral envelops are defined as the amplitude of harmonics peaks

and inter-harmonics valleys in the source spectrum. The ratios are then averaged across

spectral bands with rectangular bandwidth (ERB) scale [66]. The HNR is normally

used to measures the degree of voicing in the speech, and as well to controlled the

voiced quality by adjusting HNR in the speech signals [65].

In the previous studies of ES enhancement, linear prediction analysis-synthesis is mainly

used. The linear prediction is an efficient and mostly used method in speech signal pro-

cessing, which parameterize the speech signal into its source and filter components [14].

Linear prediction is based on the concept of speech as an output of Linear Time Invari-

ant (LTI) system, whose input is the periodic or noisy source based on type of phonation

[3]. Previous studies, also considered this fact, and assume that ES can be faithfully

modeled using its source and filter components, and it has been used extensively. In

comparison to normal speech, the pharyngo-esophagus segment vibration provides the

ES source, and vocal tract represent ES filter part.

Initially, the analysis of ES studies have provided, the essential characteristics of corre-

sponding source and filter components. Some of these studies provided different aspects

of ES, such as [67] provided the comparison of source signal of ES with normal speech

based on averaging, and concluded that ES has low irregular fundamental frequency

or no periodicity. The source correspond whispered speech source signal. The analysis

of vocal tract filter of the sustained vowels have revealed that the spectral peaks (for-

mants) of ES are shifted upward in the frequency [68]. The quality rating analysis of ES

in comparison to normal and artificial larynx speech has been the subject of the [69]. ES

source signal characteristics revealed high jitter and roughness in the study [70]. The

authors in [71] studied the long time spectral and intensity characteristics, and compare

it with normal speech for the differences. An extension to the previous study of ES [71],

authors further characterized the acoustic and temporal of the ES [72] and also provided

differences between TES, ES and normal speech [73, 74]. During these years one the

of the analysis study about spectral and temporal characteristics provided the baseline

for future studies [75, 76]. Some of the other analysis studies, commonly used in ES

research community have provided the detail analysis along with synthesis of the ES for

better and intelligible ES are presented in [77–79].

Using the source-filter decomposition by linear prediction analysis-synthesis, Qi in [77]

used the vowels /i/, /a/, /e/, /u/ and one diphthong /ou/. The vocal tract of the

vowels is modified by removing real poles, and then synthesis with original source signal

and modified vocal tract for enhanced version of ES. The modification to [77], is done
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by replacing the source signal with synthetic source signal. The synthetic source signal

was obtained using LF source model. The results thus obtained with this system, has

good intelligible speech, but it sounds robotics. The source signal has been modified by

first estimating the fundamental frequency using the autocorrelation function, and then

modifying fundamental frequency by smoothing it, and using it with LF source model,

with the original vocal tract for synthesis [80]. The results were promising in comparison

to previous methods, but still it sounds more robotic due to synthetic source model. The

fundamental frequency smoothed curve based source signal was synthesized with original

vocal tract for more intelligible ES in [81]. The vocal tract spectral peaks (formants)

of ES vowels has been smoothed and then synthesized with original source signal, the

results showed significant perceptual enhancement [82]. The bandwidth of the spectral

peaks (formants) has been increased along with LF source model based source signal

for synthesis for better and intelligible ES [83]. Perceptual enhancement was obtained

by introducing radiated pulses in the source signal in frequency domain [84]. Another

method has much better intelligible ES by applying comb filtering to source signal by

introducing excitation instants to the source signal [81]. The statistical transformation

also has been used in literature, by transforming ES into normal speech, but it needs

lot of speech samples [85, 86]. The modification to statistical transformation of ES to

normal speech using the eigenvoices, has suboptimally enhanced the intelligibility of ES

[87]. The use of Kalman filtering [88–97] for enhancing the vocal tract coefficients has

significant improvement. The Kalman filter, and the poles stabilization method [98–101]

has provided much better intelligible ES. The use of Kalman filtering in modulation do-

main [102–109] also has shown promising results [110, 111] in a sense of improved HNR

[112, 113]. The recognition based system which replaced the recognized vowels with

normal speech vowels for better and perceptual ES [114]. A software called ESOIM-

PROVE has been developed by Deusto university which provided significant freedom to

analysis and synthesis the ES, and observe the results in a sense of Harmonic to Noise

Ratio (HNR), Jitter, Shimmer [115]. A system is developed using the Kalman filtering

applied to wavelet transformed based signal, and using the pole stabilization and the

results obtained using Multi-Dimensional Voice Program (MDVP) has significant en-

hancement in HNR, and perception [100]. The estimation of periodicity of the source

cycle for accurate pitch, shimmer and jitter for better and enhanced version of ES has

provided perceptually better ES [116]. A vector quantization based speech conversion

used to modify the vocal tract of ES for better sounding ES[117]. Some of the other,

enhancement method and as well the analysis studies are [118–165]. The complete list

of studies about ES is shown in table 2.1.
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Study Analysis Synthesis Method Year

- Source Filter Source Filter - -
Weinberg and Bennet [67]

√
x x x LPC 1972

Sisty and Weinberg [68] x
√

x x LPC 1972
Bennet and B. [69]

√ √
x x LPC 1973

Smith and Horri [70]
√

x x x LPC 1978
Weinberg and Smith [71]

√ √
x x LPC 1980

Weinberg [72]
√ √

x x LPC 1982
Robbins and Singer [74]

√ √
x x LPC 1984

Weinberg [73]
√ √

x x LPC 1986
Nord and Hammarberg [75]

√ √
x x LPC 1989

Trudea and Qi [76]
√ √

x x LPC 1990
Yingyong et al. [77]

√ √ √
x LPC 1995

Tull and Rutledge [81]
√

x x x LPC 1993
Qi [78]

√ √ √
x LPC 1995

Qi and B. [79]
√

x x x LPC 1995
Kenji and Noriyo [82] x

√
x

√
LPC 1999

Cervera et al. [166] x
√

x x LPC 2001
Prosek and Vreeland [87] x x x

√
LPC 2001

Kenji et al. [125] x
√

x
√

LPC 2002
Garcia et al. [115]

√
x x x LPC 2005

Loscos and Bonada [84] x
√

x
√

LPC 2006
Ali and Jebara [83]

√ √ √ √
LPC 2006

Alfredo et al. [114] x
√

x
√

LPC/Neural network 2006
Sirichokswad et al. [80] x

√ √ √
LPC 2006

Garcia et al. [98] x
√

x x Wavelet 2006
Garcia and Mendez [99] x

√
x

√
LPC/Kalman 2008

Garcia et al. [116]
√

x x x LPC 2009
Sabayjai et al. [86] x

√
x

√
LPC 2009

Doi et al. [85]
√ √ √ √

GMM 2010
Sharifzadeh et al. [167]

√ √ √ √
CELP 2010

Ibon et al. [100] x
√

x
√

LPC/Kalman 2010
Isasi et al. [101] x x

√
x LPC 2011

Ferrat and Guerti [168]
√ √

x x LPC 2012
Ishaq and Zapirain [162]

√
x

√ √
LPC 2012

Ishaq et al. [110]
√ √ √ √

LPC/Kalman 2013
Ishaq and Zapirain [111]

√ √ √ √
LPC/Kalman 2014

Mcloughlin et al. [169]
√ √ √ √

CELP 2015

Table 2.1: Studies on Esophageal Speech (ES)
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2.4 Chapter Summary

This chapter of the thesis has provided a review for the normal, and pathology speech

production methods. The source filter model of the human speech for linear time-

invariant system described, with reference to detailed components of source and vocal

tract components. The source and vocal tract filter modeling and parameterization has

given in detail. The source-filter decomposition methods has provided. At the end the

previous work related to ES enhancement has elaborated. The techniques presented

in this chapter are the bases for the rest of thesis for developing the system for ES

enhancement.
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Chapter 3

System Design

This chapter of thesis provides the proposed system in detail in terms of following es-

sential components, i) Analysis, ii) Transformation, and iii) Synthesis, shown in Figure

3.1. The purpose of the analysis is to divide the input speech s[n] into frames, and

subsequently classify each frame as voiced and unvoiced. Each voiced frame is then

decomposed into source and filter components. For decomposition, the inverse filtering

method is used. An automatic inverse filtering method Iterative Adaptive Inverse Fil-

tering (IAIF) is used for this purpose. The IAIF first estimate the vocal tract and lip

radiation, and then iteratively cancel from the speech signal for source signal [4]. Af-

ter decomposition, the source and vocal tract components are transformed into normal

speech source and filter components using the natural glottal pulse for the source signal,

and for the vocal tract using the second order Frequency Warping Function (FWF). The

second order FWF moves the formants to lower frequency as they are moved to higher

frequency in Esophageal Speech (ES). The source signal is parameterized into Harmonic

to Noise Ratio (HNR), fundamental frequency F0 and the source signal spectrum G(z).

The transformation transforms the source and filter components into normal speech

components using natural glottal pulse and second order Frequency Warping Function

(FWF). Using these source parameters, the source signal transformation, uses any arbi-

trary normal speech F0 curve. The natural glottal pulse is then interpolated using FFT

based interpolation method using the FN0 . The gain, HNR, spectral and lip radiation

are then compensated for enhanced source signal. The vocal tract filter is modified

using the formant frequencies and bandwidth smoothing, and then shifting the spectral

peaks to the lower frequency using FWF. The bandwidth of formants are broaden using

widening filter. The modified source and filter components are then synthesized for the

enhanced version of ES.

35
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Figure 3.1: Proposed enhancement system

3.1 Analysis

The purpose of the analysis is to decomposes the frames into source and filter com-

ponents, and shown in Figure 3.2. An automatic inverse filtering method Iterative

Adaptive Inverse Filtering (IAIF) [4] is used for decomposition. After decomposition,

the analysis part, parameterize the source and filter into further subcomponents. The

source is parameterized into Harmonic to Noise Ratio (HNR), fundamental frequency

F0, and source spectrum G(z). The vocal tract is transformed into its spectrum V (z).
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Figure 3.2: Analysis part of proposed enhancement system

3.1.1 Highpass filtering

The input ES signal s[n] is first passed through a finite impulse response highpass filter

hhp[n] with a cutoff frequency 50 Hz and order of 300 taps, to reduces the low frequency

fluctuation;

sh[n] = s[n] ∗ hhp[n] (3.1)

where sh[n] is a highpass filtered signal and ∗ is a convolution operator. The least

square linear-phase finite impulse response filter with 300 taps is used in the system.

The Figure 3.3 shows the signal before and after the filtering.



Chapter 3. System Design 38

0 0.02 0.04 0.06 0.08 0.1 0.12
Time (sec)

 

 
Original
Highpass filtered

Figure 3.3: Highpass filtered signal with original signal

3.1.2 Windowing

The highpass filter signal sh[n] is then divided into frames using the Hanning window

of size 30-ms with 5-ms shift;

x[n] = sh[n].w[n] (3.2)

where x[n] is a windowed frame, and w[n] is a Hanning window (shown in Figure 3.4),

and given as;

w[n] =





0.5(1− cos[2π n
N ]) 0 ≤ n ≤ N

0 otherwise
(3.3)

where N is number of samples in a window. Other windows such as rectangular, ham-

ming, and kaiser can be used, but it is recommend from speech processing research that

Hanning window is the most optimal option.
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Figure 3.4: Hanning window of length 30-ms

3.1.3 Frame energy

After windowing the speech signal, energy of each frame is calculated;

G =
1

N

N∑

n=1

x2[n] (3.4)

where G is the energy of the frame x[n]. The Figure 3.5 shows the energy curve for the

speech signal with the frame length of 30-ms.
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Figure 3.5: Energy gain for the speech signal with frame size of 30-ms.



Chapter 3. System Design 40

3.1.4 Voiced/Unvoiced decision

The frames are classified into voiced and unvoiced frames. The voiced/unvoiced decision

is based on, following measurements, i) energy of frame G, and ii) number of zero-

crossing. The decision is shown in Figure 3.6.

Zc < τZc

G > τG

Voice/Unvoiced decision

x[n]

False

True

NO

YES

Figure 3.6: Voiced/Unvoiced decision

3.1.4.1 Zero crossing

The zero-crossing Zc of a frame is given as;

Zc =
1

N

N∑

n=1

|sign{x[n]} − sign{x[n− 1]}|
2

(3.5)

where N is the number of samples in the frame. The zero crossing for voiced frame is

low, and for unvoiced its value is high as shown in Figure 3.7. It can be seen from the

Figure 3.7, that zero-crossing for voiced speech is low, and for the unvoiced speech, it is

high.

Based on these measurements, the voiced/unvoiced decision is made accordingly;

V UV =





1 if G > τG and Zc < τZc

0 otherwise
(3.6)

where τG, τZc are the threshold values for energy and zero-crossing for voicing unvoiced

decision. Figure 3.8 shows the voiced/unvoiced area of the speech signal.
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Figure 3.7: Zero-crossing for the speech signal with frame size of 30-ms
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3.1.5 Source-Filter decomposition

After voiced unvoiced classification, the voiced frame are decomposed into source and

vocal tract filter components. The automatic inverse filtering method Iterative Adaptive

Inverse Filtering (IAIF) [4] is used for this purpose and shown in Figure 3.9. The IAIF

Iterative Adaptive Inverse Filtering (IAIF)

x[n]
Voiced frame

g[n]
Source signal

v[n]

Vocal tract

Source Filter Decomposition

Figure 3.9: Source filter decomposition of voiced frame

estimates the lip radiation and vocal tract filter by all-pole model, and then cancel these

components from the speech signal iteratively for a source signal [4]. In simplify term;

G(z) =
X(z)

V (z)R(z)
(3.7)

where V (z) and R(z) are vocal tract and lip radiation transfer functions, and given as:

V (z) =
1

1 +
∑P

k=1 akz
−k (3.8)

where ak are linear prediction coefficients of order P , and

R(z) = 1− αz−1, 0.96 < α < 1 (3.9)

where α is a lip radiation constant. Figure 3.10, and 3.11, shows the source signal and

vocal tract filter by IAIF. The vocal tract filter shown in frequency domain is clearly

discard the effect of source signal from the spectrum as there is no spectral peaks in

lower frequency, which are normally because of source signal effect.
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Figure 3.11: Vocal tract transfer function obtained by IAIF (vowel /a/)

Once, the input speech signal x[n] is decomposed into source signal g[n] and vocal

tract V (z), using IAIF, it can be analyze independent of each other. Both source and

vocal tract are then further parameterized into different parameters for analysis and

transformation purposes. The source signal is parameterized into fundamental frequency

F0, HNR, and source spectrum. The vocal tract is parameterized into its vocal tract

frequency spectrum, showing the spectral peaks as formants, and its width as formants

bandwidth.
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3.1.6 Source signal parameterization

The source signal g[n] obtained using IAIF is further parameterized into F0, Harmonic

to Noise Ratio (HNR), and its spectrum G(z).

3.1.6.1 Fundamental frequency

The fundamental frequency is estimated by applying the LP analysis with the frame

length of 3-ms and overlap of 1 sample. The error variance of LP analysis is calculated

for each frame according to:

ε(i) = rigg[n]−
P∑

k=1

aikr
i
gg[k], i = 1, 2, . . . , N (3.10)

where rigg[n] is the autocorrelation function for frame i, and N is number of frames. The

autocorrelation function is given as:

rgg[τ ] =
L∑

n=1

g[n]g[n− τ ] (3.11)

where L is number of samples in a frame. The peaks of Error Variance signal (EVS) ε

corresponds to the excitation instants. The distance between instants gives pitch period

of the signal, and inverse of pitch period corresponds the F0.

3.1.6.2 Harmonic to Noise Ratio (HNR)

The Harmonic to Noise Ratio (HNR) is used to measure the periodicity in the source

signal [170]. The evaluation of the HNR follows these simple steps for four frequency

bands:

• taking fast Fourier transform (FFT) of windowed speech

• estimating the cepstrum for each frequency band

• for each band HNR is calculated as the ratio of maximum value of cepstral peak

to the other quefrencies average value [171]
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3.1.6.3 Source spectrum G(z)

The spectral tilt of source signal is captured using the LP analysis of order 10 of the

source signal.

G(z) =
1

1 +
∑P

k=1 αkz
−k (3.12)

where αk is LP coefficients of order P (10) for the source signal g[n].

3.1.7 Vocal tract parameterization

The vocal tract transfer function is then further represented by its spectra.

V (ejω) = V (z) = 20log| 1

A(ejω)
| = 20log| 1

A(z)
| (3.13)

In short the analysis stage of ES provides us the following parameters for each voiced

frame:

• frame energy G

• frame vocal tract filter coefficients (order 30) and its spectra V (z)

• frame source signal g[n]

• frame source spectrum G(z) (order 10)

• frame HNR

• frame F0

3.2 Transformation

The transformation of the system transform the source signal g[n] of ES into normal

speech and vocal tract v[n] to nearly normal speech vocal tract. It is compulsory to

analysis source and vocal tract before actual transformation applied, so reason behind

this transformation can be justified. Analyzing the source signal obtained from sustained

Spanish vowel (/a/, /e/, /i/, /o/, /u/), it can be observed from the HNR, that the ES

lacks periodicity in comparison to normal speech, as shown in Figure 3.12. The time

domain analysis of source signal reveals that their is no periodic components, and it can

be observed clearly in Figure 3.13. The spectral tilt of source signal also does not follow
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Figure 3.12: Harmonic to Noise Ratio (HNR) of natural and ES speech (vowel /a/)
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Figure 3.13: Source excitation for natural and ES speech (vowel /a/)
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Figure 3.14: Source spectrum of natural and ES speech(vowel /a/)

the natural source spectral tilt and has high frequency emphasis, can be observed in

Figure 3.14.

Analyzing the vocal tract of both ES and NS, it can be noted that formants for Spanish

vowels are shifted upward in the frequency, as well the higher frequency components are

emphasized more in ES as shown in the Figures 3.15 3.16 3.17 3.18 3.19.

In short summary, it can be seen from the analysis of both source and vocal tract, the

ES has the following problems in comparison to Normal Speech (NS);

• source signal lacks regular fundamental frequency F0 and source signal resembles

whispered speech source signal, i.e. no F0 or harmonics

• HNR of source signal is not stable because of instability in F0.

• spectral decay also has high frequency emphasis shape

• formant frequencies are irregularly moved to higher frequencies in spectrum of the

vocal tract,

• formant bandwidths also need to be increases as it is reduced in ES,
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Figure 3.15: The formants deviation for the Spanish ES vowel /a/

Figure 3.16: The formants deviation for the Spanish ES vowel /e/
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Figure 3.17: The formants deviation for the Spanish ES vowel /i/

Figure 3.18: The formants deviation for the Spanish ES vowel /o/
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Figure 3.19: The formants deviation for the Spanish ES vowel /u/

For better and intelligible ES, it is necessary to transform the source and filter of ES

to NS components. This section describes the methods for this transformation both for

source and filter components independent of each other.

3.2.1 Source transformation

The source signal in ES is the most effected components, and need to be corrected for

the better and intelligible ES. Figure 3.20 shows the steps for the voiced source modi-

fication. The natural glottal pulse, interpolated according to the natural fundamental

frequency curve extracted from normal speech for glottal pulses for each frame. The gain

G of the original ES frame is used to adjust the energy of the source signal. The HNR

of any arbitrary normal speech, is used to add noise to avoid robotic like source signal.

The spectral tilt is applied to matched the spectrum to desire spectrum. The desired

spectrum follows the normal speech spectral tilt for better source signal. The lip radia-

tion and essential part of source signal is applied at the end for the transformed source

signal ĝ[n]. Subsequent sections provide the detailed description of each component of

the source signal transformation according to the Figure 3.20.
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Figure 3.20: Source transformation part of the system

3.2.1.1 Natural glottal pulse

The natural glottal pulse extracted from normal speech is used for this purpose and

shown in Figure 3.21. This natural glottal pulse also can be model using the 10th order

polynomial as:

gpulse[n] =
N∑

k=1

pkn
N−k, N = 11 and n = 1→ 145 (3.14)

where N is polynomial order, n is number of samples for glottal pulse modeling, and

pk are polynomial coefficients and values are: {p1 = −4.18 × 10−18, p2 = 2.93 × 10−15,

p3 = −8.73 × 10−13, p4 = 1.42 × 10−10, p5 = −1.40 × 10−8, p6 = 8.40 × 10−7, p7 =

−3.02× 10−5, p8 = 5.16× 10−4, p9 = −0.0064, p10 = 0.0284, and p11 = −0.0231}.
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Figure 3.21: Natural glottal pulse extracted from normal speech
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Figure 3.22: Natural glottal pulse vs model glottal pulse by 10th order polynomial
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3.2.1.2 Interpolation

The F0 of the ES has irregular shape, and some time it does not exist, so any normal

speech F0 curve can be used. So instead of using the ES F0, and arbitrary normal speech

FN0 can be used. The natural glottal pulse first interpolated using FFT interpolation

method, according to the new FN0 .

3.2.1.3 Gain adjustment

The FN0 interpolated pulses source signal gsyn[n] is then uses the energy G of the frame

for equalizing it to the original frame energy.

gsyn[n] = Ggsyn[n] (3.15)

where G is energy of the frame.

3.2.1.4 HNR adjustment

In order to avoid the robotic or machine like source signal, noise is added to the source

signal according to the HNR. The estimated HNR of ES is not accurate, any arbitrary

normal speech HNR is used in this experiment. The method is first estimate the HNR of

gsyn[n] as estimated in analysis part of the system. The arbitrary normal speech HNRN

is then used with HNR of gsyn[n] using these following steps:

• take FFT of gsyn[n]

• add random components (white Gaussian noise) according to the HNRN to the

FFT real and imaginary parts.

• take IFFT of the noise modified source signal

In mathematical form it can be:

Gsyn(z) = Gsyn(z) +Q(z) (3.16)

where Gsyn(z) is the spectrum of gsyn[n], and Q(z) is the HNR based noise component.
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3.2.1.5 Spectral adjustment

The spectrum of the gsyn[n] is almost constant because of synthetic pulses, so it needs

to be compensate for target spectrum, and that is G(z). To achieve this, an IIR filter is

constructed using [63]:

Hm(z) =
G(z)

Gsyn(z)
(3.17)

where G(z) and Gsyn(z) are original and synthetic LP source spectrum. The spectrally

matched synthetic source signal g[n]:

g[n] = gsyn[n] ∗ hm[n] (3.18)

where hm[n] is matched filter impulse response, and ∗ is convolution operator. The

difference between spectral slopes of natural, ES, and estimated can be observed in

Figure 3.23.
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Figure 3.23: Spectra of source signal along with natural and ES source signal

3.2.1.6 Lip radiation

Finally lip radiation is applied to get the modified source signal:

ĝ[n] = g[n]− αg[n− 1], 0.96 < α < 1 (3.19)
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where α is a lip radiation constant. The Figure 3.24 shows the system generated source

signal, and it can be seen, that it is closer to natural speech. The spectra of source

signal also follows the natural speech spectral tilt as shown in Figure 3.23.
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Figure 3.24: System generated source signal along with natural and ES source signal

3.2.2 Vocal tract transformation

It can be seen from the vocal tract analysis of ES in comparison to normal speech, it

has following problems, which needs to be compensate;

• vocal tract spectra has high frequency emphasis trend

• spectral peaks (formants) of the spectra are moved higher in the frequency in

comparison to normal speech

• spectral width (formants bandwidth) of the spectra also decreased, and needed to

be increase

The Figure 3.25 shows the proposed algorithm for dealing all the problems mentioned

above.
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Figure 3.25: Vocal tract transformation part of the system

3.2.3 Smoothing

Before applying the different processing to vocal tract, it is compulsory to smooth the

formants frequencies and its bandwidth, for smooth spectrum. The median filtering is

applied for smoothing purpose, for the curve over all the frames.

3.2.3.1 Spectral de-emphasis

To address the problem of high frequency emphasis, de-emphasis filter is applied;

Hde(z) = 1 + αz−1, 0.95 < α < 1 (3.20)

where α is de-emphasis constant. The enhanced Henh(z) vocal tract transfer function

hence is;

Henh(z) = V (z)Hde(z) (3.21)

Henh(z) =
1 + αz−1

1 +
∑P

k=1 akz
−k (3.22)
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where V (z) is the vocal tract transfer function, and ak are the LP coefficients of order

P .

3.2.3.2 Frequency warping function

In order to solve the problem of shifted spectral peaks (formants) in higher frequency, a

compensation function is needed, which moves the peaks to lower frequency according to

normal speech. For this purpose an second order Frequency Warping Function (FWF)

is calculated;

ζ(f) = α1f
2 + α2f + c (3.23)

where α1 = 6.079 × 10−5, α2 = 0.5553, and c = 60.280. The transformed frequency f̂

using FWF is given as:

f̂ = βζ(f), β = 1, f = 0→ fs
2

(3.24)

where β is a constant, f is original frequency and f̂ is transformed frequency, and fs is

a sampling frequency. The first four formants of Spanish ES and normal speech vowels

/a/, /e/, /i/, /o/ and /u/ are compared and difference between these is modeled by

FWF curve as shown in Figure 3.26. The Figure 3.27 shows the original and frequency

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

f (Hz)

f̂
(H

z)

 

 
Natural Formants (\a,e,i,o,u\)
ES formants (\a,e,i,o,u\)
Frequency warping curve
Natural curve

α1f
2 + α2f + c

Figure 3.26: Frequency Warping Function (FWF).

warped spectra.
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Figure 3.27: Frequency warped spectra.

3.2.3.3 Bandwidth adjustment

To increase or decrease the spectral peaks width (formants bandwidth), an IIR transfer

function is used [172]:

Hbw =
1 +

∑P
k=1 γ

kakz
−k

1 +
∑P

k=1 η
kakz−k

(3.25)

where γ and η are spectral bandwidth controlling constants. The spectral bandwidth

increases for γ > η, otherwise it decreases. The Figure 3.28 is showing the effect of

varying the values of γ and η, and showing how it effects the spectral peaks (bandwidth),

and can be seen that when the value of γ is greater than η such as (γ = 0.99 and

η = 0.98, 0.96) the bandwidths of peaks reduce, and in opposite such as (γ = 0.96, 0.98

and η = 0.99) bandwidth of peaks increase.
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Figure 3.28: Spectral bandwidth modification.

3.3 Synthesis

Voiced speech

The modified source signal ĝ[n] and vocal tract impulse response v̂[n] are then convolved

for enhanced version of ES ŝ[n] for voiced speech;

x̂[n] = ĝ[n] ∗ v̂[n] (3.26)

X̂(z) = Ĝ(z)V̂ (z) (3.27)

Unvoiced speech

For the unvoiced speech, the unvoiced vocal tract, and white noise ε[n] are convolved

according to the gain of the frame G;

x̂[n] = Gε[n] ∗ v[n] (3.28)

The Figure 3.29 shows the steps for synthesizing the speech frames.
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ĝ[n] v̂[n]

x̂[n] = ĝ[n] ∗ v̂[n]
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Unvoiced vocal tract White noise
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x̂[n] = ε[n] ∗ v[n]

x̂[n] x̂[n]

Voiced frame Unvoiced frame

Figure 3.29: Synthesis part of the system

The overall effect of the system to the vocal tract filter, and source signal can be seen in

the Figures 3.30, and 3.31 respectively. Figure 3.30 shows that the spectral peaks and

spectral tilts follows the normal speech spectral peaks and tilts. By observing the source

signal from Figure 3.31, proposed system follows the normal speech source signal.

Figure 3.30: Linear prediction spectra of normal speech, ES and enhanced with
system

The system transforms the source and vocal tract filter optimally, closer to the normal

speech source and vocal tract filter. The effect of the system can be clearly seen from

the spectrogram of the speech signal. Figures 3.32, and 3.33 are shown the spectrogram

of uprocessed and processed with system for the vowel /a/.
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Figure 3.31: Source signal of normal speech, ES, and enhanced ES

Figure 3.32: Spectrogram of unprocessed vowel /a/
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Figure 3.33: Spectrogram of vowel /a/ processed with the proposed system
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3.4 Chapter Summary

This chapter has addressed the problems of ES in a sense of source and filter components,

i.e. what source and vocal tract filter are missing in ES. A new method for source and

vocal tract filter transformation to normal speech source and vocal tract filter has been

presented. The source which lacks periodicity, and corresponds to whispered speech

source, uses natural glottal pulse extracted from normal speech, with the normal speech

fundamental frequency and HNR. The original frame energy and source spectrum has

been used for transforming the source to normal speech source. The vocal tract filter

has been transformed to normal speech vocal tract by addressing the problems of higher

frequencies emphasis, spectral peaks shifting and spectral peaks width reduction. These

problems has been solved by spectral de-emphasizing, frequency warping function and

spectral peaks bandwidth enlargement.
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Chapter 4

Results

4.1 Speech Database

In order to assess the system ability to enhance the ES intelligibility, large number of

ES words were used. The words list contains 28 Spanish two-syllable (CVCV) ES words

and sustained vowes /a/, /e/, /i/ , /o/, and /u/. The words list reflects the frequently

used syllabic structure of the Spanish language. The 28 words, and vowels are divided

into two different parts;

• pino, cita, tira, liso, rima, milla, dique, letra, vega, seda, templo, perla, cero,

petaca, musa, nube, poda, zona, rosa, goma, bodega, ganso, fase, gasa, jaspe,

papa, mama, chino

• /a/, /e/, /i/, /o/, /u/ - sustained vowels

There were six male speakers, with an average age of 55. Three of the speakers are

using ES restoration method for the last six years, and serving as an instructor to other

people, while two of other speakers using ES for the last three years, and one speaker

usage time is only nine months. Each speaker uttered the word 3 times. The database

contains a total of 504 utterances of words, and 90 utterances of vowels. In total the

database has 594 words and vowels.

The speech samples were recorded in the ”Asociación Vizcáına de Laringectomizados

y Mutilados de la Voz” in Bilbao (Figure 4.1). The association provides facilities to

the largyngectomees in restoring their speech, and help psychologically to be in the

normal life. The speech were recorded individually in an audiomatric booth with a high

quality microphone, Cardiod Condenser microphone AT200 from audio-technica [173]

(Figure 4.2). The mouth to microphone distance was 15 cm. The speech samples were

65
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Figure 4.1: Asociación Vizcáına de Laringectomizados y Mutilados de la Voz

recorded with sampling frequency of 44.1 kHz, which were down-sampled to 16 kHz

for computational efficiency. The speakers were given the list of words on the paper,

and instructed to read the words with the pause of approximately four seconds between

the words. The words were then separated by freely available audio editing software

WavePad [174]. The database is limited to male speakers, because the association does

not have any female speaker.

Figure 4.2: A high quality Cardiod Condenser microphone At2020 from audio-
technica (adapted from [173])
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4.2 Experiments

The proposed system was tested with two subjective listening tests and one with objec-

tive parameter. The subjective listening tests were based on Mean Opinion Score (MOS),

and preference test, while the HNR was used as objective evaluation. The visual pre-

sentation of the results has been seen using the Spectrogram. The speech database was

divided into vowels and words group. The words are grouped into 4 random group of

each with 7 words. The groups were made for avoiding too much words for one listeners.

There were 50 listeners, for each group 10 listeners participated. The age of the listeners

were 20 to 32, with an average age of 28. The listeners have no knowledge of speech

signal processing so the results are unbiased. The tests were conducted in a room which

has no or low level background noise. As there are lot of utterances for each speech

sample, so to avoid boredom and fatigue among the listeners words were divided into 4

groups and vowels;

• /a/, /e/, /i/, /o/, /u/ [vowels]

• pino, cita, tira, liso, rima, milla, dique [group-1];

• letra, seda, vega, templo, perla, cero, petaca [group-2];

• musa, nube, poda, zona, rosa, goma, bodega [group-3]

• ganso, fase, jaspe, papa, mama, chino, gasa [group-4];

The MOS is a widely used perceptual quality test for speech signals for the long time.

The listener sit in the quite room and score the perceived speech signal according to ITU-

T recommendation P.80 [175]. According to [175] the listener rate the heard speech using

the scale 1 to 5. The 1 being worst and 5 as best. The table 4.1 shows the rating scheme

and corresponding speech quality. In the first listening test, listeners were presented

MOS Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 4.1: Mean Opinion Score (MOS).

with original and processed speech samples randomly without knowing which one is the
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original and which one is the processed. The task of the listeners were to rate the speech

samples according to the table 4.1.

The second listening test was preference test based on selecting preferred speech sample

among the given utterances. The listeners were asked to selected one of the speech

samples among the original and processed samples based on which one they would rather

to listen. Based on the number of answers to this preference, results were presented in

percentage. To avoid the biasing of the results, listeners were not aware of which one is

processed or which one is the original speech sample. The proposed system presented

in this thesis was compared with the reference system [83] for the quality assessment

purpose. The reference system [83] is described in the next section briefly in order to

understand the differences between the proposed and reference system, i.e. how source

and vocal tract filter are decomposed and modified. The detailed description of the

reference system, one should see the [83].

4.2.1 Reference system

The Figure 4.3 shows the reference system [83] used for comparison purpose in this the-

sis. The reference system first decomposes the speech signals into frames. Each frame

is classified as voiced and unvoiced frame using zero crossing rate, frame energy and

the Bindex. The unvoiced frames are not altered or modified, and used at the syn-

thesizing step without modifying. The voiced frames are decomposed into source and

vocal tract filter components using linear prediction analysis [14]. The source and vocal

tract filter components are processed separately. The source signal is used to calcu-

late fundamental frequency F0 using the Esophageal Voice-Modified Auto-Correlation

Method (EV-MACM) (is the modified version of Modified Auto-correlation Method

(MACM))[83]. The F0 curve is then smoothed, and used with LF source model [25, 176]

for source synthesis, i.e. for generating the modified source signal for the synthesizing.

The vocal tract filter formants are extracted using the roots extraction of the prediction

coefficients of the vocal tract [42]. The bandwidths of the formants are calculated from

the roots of the prediction coefficients of the vocal tract [42]. The formants bandwidths

are enlarge using the perceptual weighting filter [172]. The spluttering noise from the

higher frequencies of the vocal tract is also reduced. Once the vocal tract filter and

source signal are modified, they are synthesized using the linear prediction synthesizer

for the enhanced version of the ES [14]. The modified vocal tract and source are then

synthesized using linear prediction synthesizer [14]. The Figure 4.3 shows the system

components for both source and vocal tract filter. The reference system is adapted

according to the proposed system. Both the reference and proposed system were con-

figured with the similar parameters, such as, frame size, frame overlap, and prediction
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order p etc. The reference system although originally only assessed perceptually using

the subjective listening test of Mean Opinion Score (MOS).

Linear prediction anlaysis

Formant extraction

Bandwidth enlargment

Noise reduction

Pitch extraction

Pitch smoothing

Source synthesis

Linear prediction synthesis

x[n]

ŝ[n]

Figure 4.3: Reference system (adapted from [83])

4.2.2 System Configurations

In order to ensure comparability of the proposed and reference systems, identical con-

figurations were used for the system tunning. The common configurations such as, the

frame size was set to 30-msec, the frame shift was 5-msec. The vocal tract filter was
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modeled with the prediction order p of 30. The source spectrum G(z) was used only in

proposed system, and its prediction order was set to 10.

4.3 Subjective listening test

The proposed system performance was evaluated by two subjective listening test. The

first listening test was a quality evaluation test based on Mean Opinion Score (MOS)

and second the preference test.

4.3.1 Mean Opinion Score (MOS)

The system in first phase only test with Spanish ES vowels /a/, /e/, /i/, /o/ and /u/.

The listener were given the random list of vowels. To make the test unbiased, listeners

were not told, about the processed and original utterances. The average values of the

vowels across all the listeners were calculated for MOS, and reported. Figure 4.4 shows

the average MOS for all the vowels, where it can be seen that the proposed system

outperform the reference system significantly. The mean MOS for the proposed system

falls between 2.8 to 3.5, which is a good score for ES.
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Figure 4.4: Results of the MOS test for all the vowels.

The MOS of the normal vowels and the ES vowels processed by the proposed and

reference system were statistically evaluated using p-values for significant correlation.
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The significance correlation p-values were calculated using the Matlab statistical toolbox.

The small values of p, say less than 0.05, indicates that the correlation between samples

is significant. The table 4.2 shows the p-values for the significance correlation among

the processed and normal speech vowels. It is noticeable from the table that proposed

system has significance correlation with normal speech as the p-value is less than 0.05.

From the table, it is also observed that vowel /o/ also has the p-value less than 0.05 for

the reference system. But the overall the proposed system p-values shows that it has

much closer relation with normal speech.

- Vowel p-value Significance (p<0.05)

Original /a/ 0.4511 x
Reference system /a/ 0.0613 x
Proposed system /a/ 0.0033

√

Original /e/ 0.3072 x
Reference system /e/ 0.0823 x
Proposed system /e/ 0.0135

√

Original /i/ 0.4461 x
Reference system /i/ 0.1429 x
Proposed system /i/ 0.0061

√

Original /o/ 0.0531 x
Reference system /o/ 0.0421

√

Proposed system /o/ 0.0051
√

Original /u/ 0.8123 x
Reference system /u/ 0.0753 x
Proposed system /u/ 0.0312

√

Table 4.2: Comparison of original and processed ES vowels with normal speech vowels

In the second phase of perceptual evaluation using MOS, the list of words from the

database were used. The task of the listeners was to rate the words using MOS scale.

The words list was divided into four groups to ease the listening test. The words of

every group were heard by 10 listeners. The table 4.3 shows the average MOS for all the

words. It is noticeable from the table that the proposed system has the average MOS

above the 3 most of the time in comparison to reference system. The proposed system

therefore, outperform reference system significantly.

The average MOS of the different groups is also calculated and shown in the Figure 4.5.

It is shown from the Figure 4.5, that the MOS among the group as well has the high

score as compare to reference system. The average MOS among the group is more the

3 for the proposed system and for the reference system speech samples and original

samples it is 2.5 and 1.5 respectively, which implies the low quality of the ES. Therefore,
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Word Original Reference system Proposed system Group

Pino 1.8 2.3 3.6 1
Cita 1.9 2.8 3.1 1
Tira 1.7 3.1 2.8 1
Liso 2.1 2.9 3.3 1
Rima 2.3 2.7 3.4 1
Milla 2.1 2.3 2.9 1
Dique 1.8 2.3 3.1 1

Letra 2.3 2.4 3.1 2
Vega 1.8 2.6 2.2 2
Seda 1.1 2.3 3.4 2

Templo 1.5 2.9 3.6 2
Perla 1.9 2.9 3.1 2
Cero 1.4 2.1 2.5 2

Petaca 1.1 1.2 2.3 2

Musa 1.3 3.1 3.6 3
Poda 2.1 3.2 3.3 3
Zona 1.8 2.9 3.1 3
Rosa 2.3 2.1 3.7 3
Goma 2.7 2.6 3.9 3

Bodega 2.4 2.8 3.1 3
Nube 2.5 2.6 3.5 3

Ganso 1.9 2.6 3.1 4
Fase 1.6 3.1 3.4 4
Jaspe 2.6 2.9 2.8 4
Papa 2.9 2.5 3.1 4
Mama 2.1 2.4 3.4 4
china 1.6 1.8 2.7 4
Gasa 2.1 2.9 3.7 4

Table 4.3: Mean Opinion Score (MOS).

the subjective listening test using the MOS scaling has outperform the reference system

significantly.
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Figure 4.5: Average MOS for the groups for words list.

Summary
The perceptual listening test conducted for the proposed system and

measured using MOS, has shown that the proposed system MOS is fall

between 3 to 4 for all the vowels and the words. The higher value of

MOS shows that the proposed system has significantly improved the

intelligibility of the ES speech samples, and according to MOS table 4.1

the processed speech samples shows that the quality is good. As the

words list from the database was evaluated in groups to avoid the fatigue

among the listeners, it is observed as well that the proposed system has

also improved the MOS among groups, and the MOS falls in the value

of good scale range.

4.3.2 Preference Test

The preference test is another type of perceptual evaluation test. In this test, listeners

task was to select the sound which they prefer to listen among the different utterance.

The preference test also was conduct in groups to reduce the length of the words for

one listener. For each group there were 10 listeners, and were given the original, and

processed words with proposed and reference system without knowing which one is the

original and which one is the processed one. In first phase of the test only vowels were

evaluated. Based on the preference test on vowels, it can be seen that the proposed
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system has the highest preference for vowels collectively, indicated by the middle bar

in the Figure 4.6. The proposed system for all the vowels has shown 76% preference in

comparison to reference system which has only 20% preference. The Figure 4.6 shows

the data of the preference test by combining all the vowels. In the second phase of

original proposed reference
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80

100

%

Figure 4.6: Results of the preference test.

the preference test, words were used. The results of the preference test for second

phase are presented in table 4.4. The table indicates that the proposed system has the

higher preference in comparison to reference and original speech samples. From the

Figure 4.7, the results are presented for all the groups. The average percentage of all

the groups shows significant results for the proposed system, as the preference for the

proposed system most of the time is above the 50%, in comparison to reference and

original samples which has preference always less than 30%. Therefore even among the

groups, the results have the similar trend as the individual speech sample, and it has

been indicated clearly in table 4.4 and the Figure 4.7.

Summary
The proposed system assessment using the second listening test of pref-

erence, where listeners were asked, to select which utterance of vowels

and words they prefer to listen. The results on vowels has shown that

proposed system processed speech samples were selected most of the

time. The results on words list also shows that the proposed system

processed speech samples were preferred more than 50%.
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Word Original (%) Reference system (%) Proposed system (%) Group

Pino 17.20 22.70 58.10 1
Cita 19 28 53 1
Tira 17 31 52 1
Liso 21 29 50 1
Rima 18 27 55 1
Milla 14 32 54 1
Dique 22 39 39 1

Letra 13 24 63 2
Vega 18 26 56 2
Seda 11 23 66 2

Templo 15 29 56 2
Perla 19 29 52 2
Cero 14 21 65 2

Petaca 11 12 77 2

Musa 13 34 53 3
Poda 22 29 49 3
Zona 17 35 48 3
Rosa 11 21 68 3
Goma 8 21 71 3

Bodega 12 32 56 3
Nube 25 29 46 3

Ganso 15 20 65 4
Fase 11 21 68 4
Jaspe 19 20 61 4
Papa 14 63 23 4
Mama 21 25 55 4
Chino 28 23 49 4
Gasa 18 26 56 4

Table 4.4: Preference score in percentage.

4.4 Objective Evaluation

The proposed system was objectively assessed with Harmonic to Noise Ratio (HNR).

The HNR shows the periodicity in the speech signal. The higher the value of HNR,

the higher the signal has periodic components [113]. A freely available Matlab based

software called VoiceSauce [160] was used for calculating HNR in different bands. As the

most of the periodic components of speech signals falls in lower frequencies, the HNR in

first band (0-2000 Hz) was used for HNR results. The HNR for unvoiced frame was set

to zero, and the mean of HNR from all the frames was taken, and reported.
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Figure 4.7: Results of the average preference test score for all the groups.

4.4.1 Harmonic to Noise Ratio (HNR)

In the first phase of the objective assessment of the proposed system, vowels HNR were

calculated. Figure 4.8 shows the mean HNR for all the vowels. It is indicated from the

figure that proposed system has improved the HNR significantly.

In the second phase of the HNR calculation, the HNR was calculated for the words list

from the database. The HNR is calculated by setting the HNR of unvoiced part of the

speech to zero, and mean value of voiced parts of speech HNR is taken. The table 4.5

shows the mean HNR for all the words using the VoiceSauce [160]. It is shown from that

table that the HNR for the words has significant improvement for the proposed system

over the reference and original speech samples.

Summary
The proposed system objectively evaluated using the HNR, an objective

measure to measure periodicity in the speech samples. The results

for both vowels and for the words from the database has shown that

the proposed system improved the HNR significantly in comparison to

reference and original speech samples.
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Figure 4.8: Mean Harmonic to Noise Ratio (HNR) for all the vowels



Chapter 4. Results 78

Word Original (dB) Reference system (dB) Proposed system (dB)

Pino 2.12 6.25 18.12
Cita 1.45 7.23 17.23
Tira 3.45 8.23 19.11
Liso -2.43 2.31 18.33
Rima 1.56 5.8 18.45
Milla 5.89 10.23 17.98
Dique -4.89 5.23 18.24

Letra -2.45 -0.03 19.01
Vega -0.416 1.24 18.12
Seda 5.42 12.48 17.22

Templo 4.23 8.92 18.27
Perla -6.21 5.89 16.89
Cero 6.81 16.33 19.89

Petaca 2.44 15.78 16.23

Musa -2.34 10.11 19.87
Poda 5.21 10.24 20.11
Zona 1.73 13.53 19.23
Rosa 1.13 12.13 18.45
Goma -0.08 2.12 15.41

Bodega 1.24 13.42 16.89
Nube -2.58 15.82 21.22

Ganso 1.45 16.23 18.12
Fase -5.12 8.72 17.23
Jaspe 1.19 10.78 18.98
Papa 8.41 10.23 19.34
Mama -2.01 2.51 20.12
Chino -5.28 12.34 19.31
Gasa 1.28 13.61 17.23

Table 4.5: Mean Harmonic to Noise Ratio (HNR).
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4.5 Spectrogram

In order to assess the quality and enhancement in speech samples, visual inspection of

the speech samples give good ideas about the movement of vocal tract and source signal.

The spectrogram provides the speech signal as a time frequency grid. The spectrogram

shows the variations of speech signal in frequency over the time scale. Therefore, it is

used in this thesis for visualizing the speech enhancement.

The spectrogram were used for visual analysis of speech signal, where the modification

to source and filter components can be seen easily, i.e. Figures 4.9, 4.10, 4.11 show

the spectrograms of unprocessed vowel /a/, and processed by proposed and reference

systems respectively. From the spectrograms, it can be seen clearly that the proposed

system moves and smooth the vocal tract curve, as well the source periodicity as well.

Beside that, proposed system also reduces noise in higher frequency, which is shown by

blue in the spectrograms.

Figure 4.9: Spectrogram of the unprocessed vowel /a/

The spectrograms for the unprocessed vowel /e/ is shown in Figure 4.12, and the corre-

sponding spectrograms of the vowel, processed with proposed and reference systems are

shown in Figures 4.13, 4.14.
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Figure 4.10: Spectrogram of the vowel /a/ processed with the proposed system

Figure 4.11: Spectrogram of the vowel /a/ processed with the reference system [83]
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Figure 4.12: Spectrogram of the unprocessed vowel /e/

Figure 4.13: Spectrogram of the vowel /e/ processed with the proposed system
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Figure 4.14: Spectrogram of the vowel /e/ processed with the reference system [83]

For other vowels /i/, /o/, and /u/ the spectrograms are shown in Figures 4.15 to 4.23.
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Figure 4.15: Spectrogram of the unprocessed vowel /i/

Figure 4.16: Spectrogram of the vowel /i/ processed with the proposed system
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Figure 4.17: Spectrogram of the vowel /i/ processed with the reference system [83]

Figure 4.18: Spectrogram of the unprocessed vowel /o/
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Figure 4.19: Spectrogram of the vowel /o/ processed with the proposed system

Figure 4.20: Spectrogram of the vowel /o/ processed with the reference system [83]
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Figure 4.21: Spectrogram of the unprocessed vowel /u/

Figure 4.22: Spectrogram of the vowel /u/ processed with the proposed system
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Figure 4.23: Spectrogram of the vowel /u/ processed with the reference system [83]
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4.6 Chapter Summary

This chapter has provided the detailed results of the proposed system. The proposed

system has been evaluated subjective listening test using MOS and preference score

and objectively using HNR. The proposed system evaluation has been compared with

the reference system [83]. The subjective listening test using MOS has shown that the

proposed system, always provided good quality speech according to the MOS scaling

(table 4.1). The preference test has shown that the proposed system preference all the

time is more than the 50%. At the end the HNR has shown around 15 dB improvement

over reference system and original speech samples. The results also has been visually

inspected by spectrogram in this chapter.
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Conclusion

This thesis has presented and implemented the Esophageal Speech (ES) (a pathology

speech used after total laryngectomy) enhancement method successfully. The thesis has

implemented the signal processing algorithms to deal the main problems of ES regarding

its source and vocal tract filter components. First the ES is decomposed into its source

and vocal tract filter components using automatic inverse filtering method Iterative

Adaptive Inverse Filtering (IAIF). The source and vocal tract filter are then transformed

to normal speech components independently. The source signal is most effect component

in ES has been transformed to normal speech source signal by natural glottal pulse by

borrowing fundamental frequency F0 curve and Harmonic to Noise Ratio (HNR) from

the normal speech. The vocal tract filter problems which are spectral emphasis in higher

frequencies, spectral peaks movement in higher frequencies and spectral peaks widths

are corrected using the spectral de-emphasis, Frequency Warping Function (FWF) and

spectral peaks bandwidth enlargement respectively.

The proposed system was evaluated subjectively using two listening tests, i) using Mean

Opinion Score (MOS) and, ii) preference score in percentage. The objective assessment

of the system was done using Harmonic to Noise Ratio (HNR). The proposed system

was compared with reference system [83]. The improvement in MOS and the higher

percentage of preference score have shown the capability of improving the intelligibility

of ES in comparison to reference system and original speech samples. Furthermore the

higher value of HNR objectively validated the proposed system capability, which resulted

in higher quality ES.

5.1 Accomplished Objectives

Regarding the set objectives for this thesis;

89
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• The high quality ES speech samples database has been recorded from the ”Aso-

ciación Vizcáına de Laringectomizados y Mutilados de la Voz” of Bilbao. The

database consists 28 two-syllable (CVCV) ES words, and sustained vowels (/a/,

/e/, /i/, /o/, /u/). Every word and vowel has 18 utterances and database has

total of 594 utterances of words and vowels. This large database has provided

enough support for the proposed system research.

• The ES has been decomposed into its source and vocal tract filter components suc-

cessfully, using the automatic inverse filtering Iterative Adaptive Inverse Filtering

(IAIF).

• The transformed source signal which is near to normal speech signal, is obtained

using the natural glottal pulse obtained from the natural speech. The original

source spectrum and frame energy are used with normal speech fundamental fre-

quency and Harmonic to Noise Ratio (HNR) for the modified source signal.

• The vocal tract filter has been transformed to normal speech vocal tract filter using

spectral de-emphasis, Frequency Warping Function (FWF) and spectral peaks

width enlargement.

• The processed ES has been evaluated objectively, and subjectively. Objectively,

it is assessed using two listening tests, one MOS, and another preference score.

Subjectively, proposed system is assessed using HNR.

5.2 Scientific Impact

The work presented in this thesis has following list of publications;

Journals

• Rizwan Ishaq, Begoña Garćıa Zapirain, ” Optimal Subband Kalman Filter for

Normal and Oesophageal Speech Enhancement”, Bio-Medical Materials and En-

gineering, Vol. 24 (6), pp: 3569-3578, September 2014 [111]

• Rizwan Ishaq, Begoña Garćıa Zapirain, ”Enhancement of Spanish Oesophageal

Speech Vowels using Coherent Subband modulator Kalman Filtering”, Technology

and Health Care (Accepted).

• Rizwan Ishaq, Begoña Garćıa Zapirain, ”Enhancement of Early Stage Spanish

Esophageal Speech Using Modified Glottal Flow and Vocal Tract Using Natural
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Pulse and Frequency Warping”, Journal on Audio, Speech and Music Processing

(in Review process)

Conferences

• Rizwan Ishaq, Begoña Garćıa Zapirain, ”Adaptive Gain Equalizer for Improved

of Esophageal Speech”, IEEE international Symposium on Signal Processing and

Information Technology (ISSPIT), pp: 153-157, Dec 2012 [177].

• Rizwan Ishaq, Muhammad Shahid, Benny Lovstrom, Begoña Garćıa Zapirain, In-

gvar Claesson, ” Modulation Frequency Domain Adaptive Gain Equalizer using

Convex Optimzation”, International Conference on Signal Processing and Com-

munication Systems (ICSPCS), pp: 1-5, Dec 2012 [178].

• Rizwan Ishaq, Begoña Garćıa Zapirain, Muhammad Shahid, Benny Lovstrom, ”

Subband Modulator Kalman Filtering for Single Channel Speech Enhancement”,

IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP),

pp: 7442-7446, May 2013 [110].

• Rizwan Ishaq, Begoña Garćıa Zapirain, ”Esophageal Speech Enhancement Using

Modified Voicing Source”, IEEE international Symposium on Signal Processing

and Information Technology (ISSPIT), pp: 210-214, Dec. 2013 [179]

• Rizwan Ishaq, Dhananjaya, N Gowda, Paavo Alku, Begoña Garćıa Zapirain, ”Vowel

Enhancement in Early Stage Spanish Esophageal Speech Using Natural Glottal

Flow Pulse and Vocal Tract Frequency Warping”, 6th Workshop on Speech and

Language Processing for Assisitive Technologies [180].

Others

• Rizwan Ishaq, Muhammad Shahid, Benny Sallberg, Benny Lovstrom, Nedelko

Grbic, Ingvar Claesson, ” Modulation Domain Adaptive Gain Equalizer for Speech

Enhancement”, ACTA Press, June 2011 [159].

5.3 Future Lines

Based on the proposed system, several future research lines can be established.
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• The decomposition of voiced ES into source and vocal tract filter is good using

IAIF, but still needs accurate and modified methods for decomposition by tak-

ing into account the vibration of esophagus which can be observed by Electro

Glottograph (EGG) and high speed cameras.

• Based on this estimation of accurate source estimation, the vocal tract filter can

be estimated perfectly, and then optimized algorithms can be designed

• In order to improve the social life of laryngectomee, the proposed system can be

implemented to real world scenario, such as on digital signal processor devices,

microcontroller or in mobile phone as a software which can be used to convert the

ES into normal speech.

• The current implementing of proposed system work off-line i.e. database is al-

ready available. The proposed system in future can be test with on-line real time

communication.
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Abstract
This paper presents an enhancement system for early stage
Spanish Esophageal Speech (ES) vowels. The system de-
composes the input ES into neoglottal waveform and vocal
tract filter components using Iterative Adaptive Inverse Filter-
ing (IAIF). The neoglottal waveform is further decomposed into
fundamental frequency F0, Harmonic to Noise Ratio (HNR),
and neoglottal source spectrum. The enhanced neoglottal
source signal is constructed using a natural glottal flow pulse
computed from real speech. The F0 and HNR are replaced
with natural speech F0 and HNR. The vocal tract formant fre-
quencies (spectral peaks) and bandwidths are smoothed, the
formants are shifted downward using second order frequency
warping polynomial and the bandwidth is increased to make
it close to the natural speech. The system is evaluated using
subjective listening tests on the Spanish ES vowels /a/, /e/, /i/,
/o/, /u/. The Mean Opinion Score (MOS) shows significant im-
provement in the overall quality (naturalness and intelligibility)
of the vowels.
Index Terms: speech enhancement, glottal flow, analysis syn-
thesis vocal tract, spectral sharpening, warping

1. Introduction
The removal of the larynx after a Total Laryngectomy (TL),
changes the speech production mechanism. The trachea which
connects the larynx and lungs for air source is now connected
to a stoma (hole on neck) for breathing. The vocal folds which
resided in larynx are no more available. After TL, there is no
voicing and air source for speech production. Therefore alter-
native voicing and air source are needed for speech restoration.
Three methods are available for this purpose, i) Esophageal
Speech (ES), ii) Tracheo-Esophageal Speech (TES), and iii)
Electrolarynx (EL). ES and TES both use a common voicing
source, the Phyarngo-Esophageal (PE) segment, but with a dif-
ferent air source, while EL uses external devices for voicing
source with no air source. The ES is preferred over other meth-
ods, because it does not require surgery (TES) or external de-
vices (EL). ES involves, however, a low pressure air source, and
an irregular PE segment vibration which results in low quality
and low intelligible speech. Compared to the production of nor-
mal speech according to the source-filter model [1], the voicing
source in ES is severely altered and does not have any funda-
mental frequency or harmonic components. The vocal tract fil-
ter is also shortened in ES. The ES can be enhanced by trans-
forming the source and filter components to those of normal
speech using signal processing algorithms.

In previous studies ES is typically decomposed into its
source and filter components using Linear Predication (LP)

based analysis-synthesis techniques. Based on this assump-
tion the authors in [2, 3] replaced the voicing source with the
Liljencrants- Fant (LF) voicing source, and reported significant
enhancements. Fundamental frequency smoothing and correc-
tion with the synthetic LF source model were used for quality
enhancement also in [4]. ES enhancement based on formant
synthesis has also shown significant improvement in intelligibil-
ity [5, 6]. In [7] the source and filter components were modified
by replacing the source with the LF model and increasing the
bandwidth of filter formants for better quality speech. Statistical
conversion from ES to normal speech has also improved intelli-
gibility, but requires more ES data [8]. Some other not so com-
mon approaches are based on Kalman filtering [9, 10, 11, 12],
and modulation filtering enhancement [13, 14].

Almost all methods available in the literature assume that
the fundamental frequency of ES can be estimated accurately.
The voicing source signal is then modified with the synthetic
LF model voicing source. The vocal tract formants are typically
considered to be the same as in normal speech signals. In real-
ity, however, the fundamental frequency of ES is highly irregu-
lar and the voicing source resembles whispered speech. More-
over, formants center frequencies are affected by the shortening
of vocal tract length due to surgery. In order to deal with these
deficiencies, this paper proposes an ES enhancement method
based on the GlottHMM single pulse synthesis [15, 16, 17].
The system decomposes ES into neoglottal waveform and vo-
cal tract filter components using Iterative Adaptive Inverse Fil-
tering (IAIF) [18]. Natural glottal pulse extracted from real
speech is used to construct the glottal waveform by borrowing
F0 curve and HNR from normal speech. The vocal tract fil-
ter is also modified by smoothing the spectral peaks and their
bandwidths. The spectral peaks of the vocal tract filter are also
moved to lower frequencies in order to compensate the rising
of formant in ES. The formant bandwidths are also increased
for better quality speech. The system is validated with Spanish
Esophageal Vowels subjectively using the Mean Opinion Score
(MOS). The paper in next section describes the system in detail.
The subsequent sections contain results, discussion and finally
conclusions.

2. System Description
The proposed system, shown in Figure 1, is divided into three
main components, i) analysis, ii) transformation, and iii) syn-
thesis. The analysis part decomposes the voiced speech frame
into its source and filter components. The transformation pro-
vides the modified source and filter components. Finally the
modified components are combined in the synthesis part to gen-
erate enhanced ES.



Figure 1: Proposed enhancement system.

2.1. GlottHMM based analysis

The goal of the analysis part of the system is to decompose the
ES signal into a neoglottal source signal and a vocal tract spec-
trum. The input speech signal s[n] is first passed through high-
pass filter hhp[n] with a cutoff frequency of 70 Hz.

sh[n] = s[n] ∗ hhp[n] (1)

where sh[n] and ∗ are the highpass filtered speech signal and a
convolution operator, respectively. The highpass filtered signal
sh[n] is then windowed using a rectangular window of size 45-
ms, with 5-ms frame shift.

x[n] = sh[n]w[n] (2)

where w[n] is the rectangular window. Firstly the log energy G
of frame is extracted using,

G = log(

N−1∑

n=0

x2[n]) (3)

where N is the number of samples in the frame. Glottal Inverse
Filtering (GIF) is then used to separate the frame into a neoglot-
tal source signal and a vocal tract spectrum. The automatic in-
verse filtering, IAIF is used [18]. IAIF estimates vocal tract and
lip radiation using all-pole modeling and then iteratively can-
cel these components. In simplified form, the neoglottal source
signal:

U(z) =
X(z)

V (z)R(z)
(4)

where U(z), X(z), V (z) and R(z) are the z-transforms of
neoglottal source signal u[n], speech signal x[n], vocal tract
impulse response v[n], and lip radiation response r[n] re-
spectively. The estimated neoglottal source signal u[n] is
parametrized into fundamental frequency F0, Harmonic to
Noise Ratio (HNR) and neoglottal source spectrum U(z). The
autocorrelation of the neoglottal source signal u[n] is used for
F0 estimation. The HNR is estimated using the upper and lower
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Figure 2: HNR of ES and natural speech.

smoothed spectral envelopes ratio to determine the voicing de-
gree in the neoglottal voicing source signal u[n] for five fre-
quency bands [15]. In short the analysis part of the system
provides for each frame the following, i) Frame energy G, ii)
vocal tract spectrum V (z) (LP order 30), iii) F0, iv) HNR and
v) neoglottal source spectrum U(z) (LP order 10).

2.2. ES to normal speech transformation

The parameters obtained from the analysis are transformed into
natural speech parameters. The neoglottal signal and vocal tract
are modified independently.

2.2.1. Neoglottal source signal enhancement

The neoglottal source signal u[n] is the most effected speech
component in ES. Therefore the parameters of this signal are re-
placed with any arbitrary natural speech signal for a better glot-
tal source signal. The natural glottal pulse which is extracted
from normal speech is first interpolated using the cubic spline
interpolation by replacing the frame original F0 with natural
speech FN

0 . The interpolated glottal pulse voicing source is
then multiplied with the smooth gain G and the natural speech
HNR is then used to add noise in the frequency domain for nat-
uralness according to the following steps:

• Taking FFT of the neoglottal waveform,

• Adding random components (white Gaussian noise) to
real and imaginary part of FFT according to HNR,

• Taking IFFT of noise added neoglottal waveform

Usyn(z) = 10GG(z) +Q(z) (5)

where Usyn(z) is the synthetic glottal source, G(z) is the nat-
ural glottal pulses source, and Q(z) is HNR based noise com-
ponent. Figure 2 shows the mean value of HNR for all voiced
frames along with standard deviation. The figure indicates that
HNR of ES is greatly different from that of normal speech.
Therefore, it is justified to replace the HNR of ES with the HNR
of normal speech in the vowel enhancement system. In order to
adjust the spectrum of neoglottal waveform to the spectrum of
the target waveform, the former is filtered with following IIR
filter:

Hm(z) =
U(z)

Usyn(z)
(6)

where U(z) and Usyn(z) are the LP spectra of the original and
synthetic neoglottal waveform, respectively. The lip radiation is
applied to the spectrally matched neoglottal waveform û[n]:

û[n] = û[n]− αû[n− 1], 0.96 < α < 1 (7)
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Figure 3: Glottal excitations (computed from the vowel /a/) in
the time domain (a) and in the frequency domain (b).

where û[n](Û(z)) and α(0.98) are the modified neoglottal
waveform and lip radiation constant, respectively.

Figure 3(a) shows time-domain examples of glottal excita-
tions of natural speech and ES together with a waveform com-
puted with the proposed enhancement system. It can be seen
that the proposed system is capable of producing a glottal exci-
tation that is highly similar to that of natural speech. As shown
in Figure 3(b), the spectral slope of the excitation waveform
generated by the proposed method is also close to that of natural
speech, especially at low frequencies, but the generated spec-
trum also retains the spectral slope of ES at higher frequencies.

2.2.2. Vocal tract modification by nonlinear frequency warping

The vocal tract spectrum of ES has the following characteris-
tics, i) higher frequencies are emphasized more compared to
lower frequencies, ii) spectral resonances (formants) are moved
to higher frequencies, and iii) resonance bandwidths are re-
duced in comparison to normal speech vowels. To cope with
the higher frequency emphasis, a de-emphasis filter is applied
to the vocal tract spectrum. The resulting vocal tract transfer
function is then expressed as:

Henh(z) =
1 + αz−1

1 +
∑P

p=1 apz
−p
, 0.95 < α < 1 (8)

where P is the order of the all-pole vocal tract filter and α is the
de-emphsis constant.

Because formants of ES are moved upward in frequency,
a procedure is needed to adjust them to coincide more closely
with the formant values of normal speech. For such a procedure,
we used a second order Frequency Warping Function (FWF)
ζ(f) defined as:

ζ(f) = α1f
2 + α2f + c (9)
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where α1 = 6.079× 10−5, α2 = 0.5553, and c = 60.280.

f̂ = βζ(f), β = 1, f = 0→ fs
2

(10)

where f̂ and f , are warped and original frequencies, and β is a
constant. Figure 4 demonstrates FWF using first four formants
of vowels (/a/, /e/, /i/, /o/, /u/) extracted from normal speech
(x-axis) and ES (y-axis). The obtained frequency warping, ap-
plicable for a general formant mapping between normal speech
and ES, is shown in Figure 5. In order to expand the formant
bandwidths, exponential windowing is used for the vocal tract
filter coefficients as follows [19]:

Hs(z) =
1 +

∑P
p=1 γ

papz
−p

1 +
∑P

p=1 η
papz−p

, 0.90 < γ, η < 1 (11)

where γ and η are constants controlling the spectral bandwidth.
If γ > η bandwidth of formants increase, otherwise it de-

creases (i.e. formants are sharpened). For the purpose of the
present study, η(0.97) is always smaller than γ(0.99) in order
to increase formant bandwidths.

2.3. Synthesis of enhanced speech

The synthesis part involves convolving the modified neoglot-
tal waveform and the impulse response of the vocal tract filter
yielding the enhanced version of ES x̂[n];

x̂[n] = v̂[n] ∗ û[n] (12)

where û[n] and v̂[n] are the modified neoglottal waveform and
vocal tract impulse response, respectively.

3. System Evaluation
The system was evaluated with ES vowels of Spanish (/a/, /e/,
/i/, /o/, /u/) recorded in speech rehabilitation center. The data
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Figure 6: Spectrograms of the vowel /a/ for different processing
types: unprocessed (a), processed with the proposed system (b),
processed with the reference system (c) [7]

was collected from five early stage male ES talkers by asking
them to utter each vowel four times. Due to lack of female
patients in the rehabilitation center, only male speakers were
involved in the study. The speech sounds were sampled with
44.1 kHz from which the data was down-sampled to 16 kHz for
computational efficiency.

The system performance is visually demonstrated with
spectrograms in Figure 6. In this figure, and also later in Fig-
ures 7 and 8, the proposed system is compared with a reference
system based on using the LF source and formant modification
with a bandwidth extension system [7]. It can be seen from Fig-
ure 6 that the spectrogram computed from the enhanced vowels
by the proposed system shows a clearer formant and harmonics
structure in comparison to ES and the reference system.

3.1. Subjective listening evaluation

Two subjective listening tests were conducted. The first one was
a quality evaluation based on the Mean Opinion Score (MOS)
which is a widely used perceptual quality test of speech based
on a scale from 1 (worst) to 5 (best). In this test, the listeners
heard original ES vowels and the corresponding enhanced ones,
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Figure 7: Results of the MOS test for all the vowels.
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Figure 8: Results of the preference test.

processed by both the proposed and the reference method, in a
random order and they were asked to grade the quality of the
sounds on the MOS scale. The second listening test was a pref-
erence test where the listeners heard vowels corresponding to
the same three processing types and they were asked to select
which one they prefer to listen. A total of 10 listeners partici-
pated in the listening tests.

Figure 7 shows the results of the MOS test. The data indi-
cates that the proposed system has a mean MOS higher than 2.5
for all the vowels, which can be considered a good quality score
for ES samples. Figure 8 shows the data of the preference tests
by combining all the vowels. Also these data indicate that the
proposed method has succeeded in enhancing the quality of the
ES vowels.

4. Conclusion
An enhancement system for ES vowels was proposed based on
using a natural glottal pulse combined with second order poly-
nomial Frequency Warping Function. A preliminary evaluation
of the system was carried out on early stage Spanish ES vow-
els by comparing the system performance with a known refer-
ence method. Results obtained with a MOS evaluation show
clear improvements in speech quality both in comparison to the
original ES vowels and to sounds enhanced with the reference
method. The good performance was corroborated with a prefer-
ence test indicating that in the vast majority of the cases, listen-
ers preferred to listen to the sounds enhanced by the proposed
method. Future work is needed to study the system together
with advanced stage ES speakers.
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Optimal subband Kalman filter for normal 

and oesophageal speech enhancement 

Rizwan Ishaq 

∗

 and Begoña García Zapirain
 

Deustotech-LIFE, University of Deusto, Bilbao, Spain 

Abstract. This paper presents the single channel speech enhancement system using subband Kalman filtering by estimating 
optimal Autoregressive (AR) coefficients and variance for speech and noise, using Weighted Linear Prediction (WLP) and 
Noise Weighting Function (NWF). The system is applied for normal and Oesophageal speech signals. The method is eva-
luated by Perceptual Evaluation of Speech Quality (PESQ) score and Signal to Noise Ratio (SNR) improvement for normal 
speech and Harmonic to Noise Ratio (HNR) for Oesophageal Speech (OES). Compared with previous systems, the normal 
speech indicates 30% increase in PESQ score, 4 dB SNR improvement and OES shows 3 dB HNR improvement.  

Keywords: Kalman filter, autoregressive, speech enhancement, weighted linear prediction 

1. Introduction 

The Kalman filter is considered optimal among other signal enhancement methods, such as Wiener 

filtering, spectral subtraction, wavelet denoising, etc. [1–3]. Inheritance of speech production model 

and non-stationary signal processing are the advantages of Kalman filtering over other speech en-

hancement methods [4]. The Kalman filter is first introduced for speech enhancement by Paliwal, pro-

viding clean speech Autoregressive (AR) coefficients, and noise variances using conventional Linear 

Prediction (LP) [5]. The further modification to [5] is done by estimating AR coefficients recursively 

through Expectation Maximization (EM) algorithms [6] and modeling colored noise as AR process 

[7–9]. The Kalman filter is used in frequency subbands for efficient and low complex processing with 

fewer number of AR coefficients using conventional LP [10–12]. 

The Oesophageal Speech (OES) is a special type of alaryngeal speech used after the treatment of la-

ryngeal cancer for rehabilitation of voice. Several techniques are available for speech restoration, most 

important being Oesophageal Speech (OES), Tracheo-Esophageal Speech (TES) and Electrolarynx 

(EL) speech. The OES is most used method because it requires no external device (EL) and surgery 

(TES). Despite its advantages, OES has low fundamental frequency and intelligibility, due to irregular 

vibration of esophagus and noise. The Kalman filter is also utilized to enhance the quality of OES such 

as, fullband Kalman filtering [13–15] and subband Kalman filtering [12]. Kalman filtering has shown 

significant enhancement over other methods such as source-filter decomposition [16] for enhancing 

source and filter [17–20], use of LF voicing source [21,22], and statistical methods [23].  
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Speech enhancement using Kalman filter needs optimal speech, noise AR coefficients and vari-

ances. Previous methods [4–7,12,13] use conventional LP for this purpose, but the conventional LP 

has the sensitivity problem with additive background noise [24]. The estimation of noise AR coeffi-

cients also needs non-speech activity detector. To overcome these problems, this paper presents the 

optimal subband Kalman filter by providing optimum AR coefficients for speech and noise signals 

usingWeighted Linear Prediction (WLP) [24] and Noise Weighting Function (NWF) [25]. The pro-

posed system is evaluated, for normal speech by Perceptual Evaluation of Speech Quality (PESQ) 

score and Signal to Noise Ratio (SNR) improvement, and for OES using Harmonic to Noise Ratio 

(HNR). The paper outline is as follow; Section 2 provides the detailed description of the system, Sec-

tion 3 provides the optimal parameter estimation, followed by simulation results in Section 4 and Con-

clusion in Section 5. 

2. System design 

The proposed system (KF-P) components are shown in Figure 1, and subsequent sections provide 

the detail of every component. 

2.1. Analysis filter bank 

The analysis filterbank is used to decompose the input speech signal x(n) into different subbands. 

The x(n) passes through the filterbank of different Linear Time Invariant (LTI) bandpass filters, each 

having impulse response of �����, mathematically the frequency subband signal is [26]: 

  ����� 	 ���� 
 ������� (1) 

 

where * is the convolution operator.  

 

 

Fig. 1. Block diagram of proposed system. 
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2.2. Optimal subband Kalman filter 

The subband signal ����� consists of clean speech ����� and noise ����� as follows: 
  ����� 	 ����� 
 �����  (2) 

 

Both ����� and ����� can be modelled as AR processes of order � and �: 
  ����� 	  ∑ ��,�������� � �� 
 ����� �

�	
  (3)  ����� 	 ∑ ��,������������� 
 Γ���� �
�	
  (4) 

 

where ����� and Γ���� are uncorrelated additive white Gaussian noises with zero mean and variances ��,

�

 and ��,�
�

 respectively. Given ����� 	 ������, … , ���� � � 
 1��, and ����� 	 �����, … , ���� �� 
 1��, above equations can be written in state-space domain for Kalman filtering: 
 ����� 	 ��,����� � 1� 
 ��,������   (5) ��,���� 	 ��,�

� �����   (6) ����� 	 ��,����� � 1� 
 ��,�Γ����  (7) ��,���� 	 ��,�
� �����     (8) 

 

where state transition matrices ��,� and �_� , �� are :  
 

��,� 	
!""
"# 0 1 0 … 00 0 1 … 0% % % … %0 0 0 … 1���,� ���,��
 ���,��� … ���,
&''

'(
�,�

  (9) 

��,� 	
!""
"# 0 1 0 … 00 0 1 … 0% % % … %0 0 0 … 1���,� ����,��
 ���,��� … ���,
&''

'(
�,�

  (10) 

 

and ��,�, ��,�, ��,� and �_� , �� are:  
 ��,� 	 ��,�

� 	 �0, 0, … ,1���
, ��,� 	 ��,�
� 	 �0, 0, … , 1���
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Combining the above equations we have: 

   �)���� 	 �� �)��� � 1� 
 �� �*���� (11)   ����� 	 ��
� �)������   (12) 

 

where �)����, �� , �� , �� ,  and �*���� are given as: 
 �)���� 	 ������, … , ���� � � 
 1�, �� , … , ���� � � 
 1�� 

�� 	 +��,� 00 ��,�
, , �� 	 +��,� 00 ��,�

, 
��

� 	 -��,�, ��,�., �*�
���� 	 ���,�

� , ��,�
� � 

 

The Kalman filter provides optimal estimate �̂���� of �����, with Kalman gain 0����, prediction 
error covariance 1���|� � 1� and filtering error covariance 1���� [5,12] : 
 �)3���� 	 �� �������
� 
 0����-����� � ��

����)3��� ��.   (13) 

0���� 	 1���|� � 1���
�-��1���|� � 1���

�.�
   (14) 1���|� � 1� 	 ��1��� � 1���
� 
 ��4������

�  (15) 1���� 	 - 5 � 0������
�.1���|� � 1�  (16) 

 

Where �)3���� is the estimated state vector. The covariance matrix of �*���� is: 
 4���� 	 67 �*���� �*�

����8 	 9��:;��,�
� , ��,�

� < 
 

The desired �̂���� is given as: 
 �̂���� 	 ��,�

� �)3����   (17) 

2.3. Synthesis filter bank 

The filterbank summation method is used to reconstruct the enhanced fullband signal �̂���, using 
the modified frequency subbands �̂���� [26]: 
 �̂��� 	 ∑ �̂����       �

�	
  (18) 
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3. Optimal parameter estimation  

The optimal estimation of speech, noise AR coefficients ��,� , ��,�  and their respective variances ��,�
� , ��,�

�  are necessary for the optimal results of Kalman filtering. This section provides the optimal 

AR coefficients and variance for speech using WLP [27], and colored noise optimal parameters by 

computing noise signal through NWF [25]. 

3.1. Weighted Linear Prediction (WLP)  

The conventional Linear Prediction (LP) sensitivity to additive background noise produces poor AR 

coefficients [27]. The Conventional LP AR coefficients are estimated using Minimum Mean Square 

Error (MMSE) criterion. The prediction error =�
���� partial derivative with respect to AR coefficients ��,� is set to zero [16,27]: 

 

�

���,�
=�

���� 	  �

���,�
 ;∑ ������� � ∑ ��,����� � >��

�	
 ��< 	 0  (19) 

 

Considering ?�,��>, �� 	 ∑ ���� � >����� � ��� , the solution to Eq. (19) is:  
 ∑ ��,�?�,��>, �� 	 ?�,��>, 0�,   > 	 1, 2, … , �                �

�	
       (20) 

 

To overcome the sensitivity of LP to additive background noise, WLP introduced weighting func-

tion A���� using the Short Time Energy (STE) of size M, which provides better estimation of AR co-

efficients by focusing on high SNR region [24]: 

 A���� 	  ∑ ��
��� � �� �

�	
     (21) 

 

Using  A���� , the AR coefficients can be obtained, considering ?�,��>, �� 	 ∑ A�������� ��>����� � ��:  
 

C��,
��,�%��,�

D 	 !""
#?�,��1,1� ?�,��1,2� … ?�,��1, ��?�,��2,1� ?�,��2,2� … ?�,��2, ��% % % %?�,���, 1� ?�,���, 2� … ?�,���, ��&''

(�


!""
#?�,��1,0�?�,��2,0�%?�,���, 0�&''

(
 (22) 

 

The speech variance ��,�
�  is [28]:  

 ��,�
� 	 ?�,��0,0� � ∑ ��,�?�,��0, ���

�	
    (23) 
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3.2. Noise Weighting Function (NWF)  

The noise signal ����� is necessary for the sub-optimum AR coefficients ��,� and noise variance ��,�. The NWF estimates ����� using the ratio of noise to speech E���� [25]: 
 

E���� 	 min IJ �����

�������
K�� , L�M (24) 

 

where N� and L� are gain rise exponent and limiting factor respectively. The O���� and P���� are:  
 O���� 	 Q�O��� � 1� 
 �1 � Q��|�����|   (25) 

 

P���� 	 R O����  �S O���� T P����� � 1��1 
 U��;P��� � 1�< VW�X?Y��X  Z     (26) 

 

where Q� 	 


 �,���,�
 and U�




 ��,����,	
  are forgetting factor constant and positive constant respectively. 

The S�,� is subband sampling frequency, and [�,! and [�,� are time constants controlling the noise lev-

el. The noise signal ����� is obtained by multiplying E���� to �����: 
 ����� 	  E����. �����    (27) 

 

The AR coefficients ��,� can be calculated by solving following equation:  

 ∑ ��,�?�,��>, �� 	 ?�,��>, 0�,    > 	 1,2, … , �  �
�	
  (28) 

 

Where  ?�,��>, �� 	 ∑ ���� � >����� � ��.�   The noise variance ��,�
�  is [28]:  

 ��,�
� 	 ?�,��0,0� � ∑ ���,��"�,
�#,��

�
�	
   (29) 

4. Evaluation results  

4.1. Speech material and system setting  

The performance of proposed system (KF-P) for normal speech, is tested by male (5 speakers) and 

female (5 speakers) speech signals of sampling frequency 16000 Hz [29], which are corrupted by Fac-

tory Noise (FN) and Engine Noise (EN) at different Signal to Noise Ratio (SNR) levels (-10, -5, 0, 5 

,10 dB). For OES, Spanish OES vowels \a\, \e\, \i\, \o\, and \u\are used, which are recorded from pa-

R. Ishaq and B. García Zapirain / Optimal subband Kalman filter3574



thology speech rehabilitation association (6 male speakers uttered each vowel 3 times and center does 

not have any female speaker). 

The system uses 16 subbands filterbank [29]. Each subband uses segment and overlap size of 30 ms 

and 15 ms respectively. The prediction orders p and q for speech and noise are 12 and 6 respectively. 

The proposed system (KF-P) for normal speech, is compared with following available subband 

based 

Kalman filtering algorithms: 

− (KF-1){subband Kalman filtering with optimal parameter estimated recursively using conven-

tional 

− Linear prediction [28]}; 

− (KAF-2){Subband Kalman filtering, where parameters estimated in modulation domain with con-

ventional linear prediction [12]}; 

− (KF-3){ subband Kalman filtering where speech and noise parameters estimated using LMS algo-

rithm [10]}. 

The proposed algorithm (KF-P) for OES, is compared with following systems: 

− (KF-1){fullband Kalman filter originally used for OES [13]}; 

− (KF-2){Subband Kalman filter in modulation domain using conventional linear prediction [12]}; 

− (KF-O){modification to [13] using poles stabilization [15]}. 

4.2. PESQ 

Table 1 and 2 show the PESQ scores for female and male speech, corrupted by engine noise and 

factory noise. The proposed system (KF-P) outperforms all other available subband Kalman filtering 

methods, particularly at low SNR. 

4.3. Signal to Noise Ratio (SNR) improvement  

The Table 3 and 4 has shown SNR improvement for male and female speech signals corrupted by 
factory and engine noises. The proposed system (KF-P) has shown around 3-4 dB improvement over 
the other methods. 

 
Table 1 

PESQ Scores for Engine Noise Corrupted Speech 

SNR(dB) -10 -5 0  5 10 

Original 0.52 0.90 1.73 1.84 2.48 
KF-P 1.34 1.48 2.53 3.18 3.91 
KF-1 0.93 1.02 2.48 2.78 3.19 
KAF-2 0.78 0.99 1.38 2.72 3.62 
KF-3 0.28 0.69 1.59 2.81 3.71 

Male Speaker 

Original  0.65 0.80 1.53 1.94 2.78 
KF-P 1.17 1.67 2.83 3.28 3.47 
KF-1 0.91 1.22 2.18 2.98 3.09 
KAF-2 0.96 1.19 2.07 2.52 3.10 
KF-3 1.03 1.07 2.09 2.91 3.26 

Female Speaker 
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Table 2 

PESQ Scores for Factory Noise Corrupted Speech 

SNR(dB) -10 -5 0  5 10 

Original 0.32 0.89 1.63 2.43 2.97 
KF-P 1.20 1.68 2.03 2.78 3.70 
KF-1 0.34 0.91 1.98 2.12 2.99 
KAF-2 0.98 1.10 1.78 2.52 3.12 
KF-3 0.78 0.99 1.89 2.11 3.31 

Male Speaker 

Original  0.42 0.79 1.53 2.63 2.45 

KF-P 1.40 1.88 2.53 3.21 3.50 

KF-1 0.67 1.01 2.11 2.12 2.79 

KAF-2 0.98 1.27 2.18 2.75 3.12 
KF-3 1.18 1.69 2.39 2.94 3.01 

Female Speaker 

 
Table 3 

Signal to Noise Ratio (SNR) improvement for Engine Noise Corrupted Speech 

SNR(dB) -10 -5 0  5 10 

KF-P 2.231 3.31 2.84 5.12 8.97 
KF-1 0.33 1.98 2.03 3.98 7.3 
KAF-2 1.94 2.21 2.38 4.12 7.09 
KF-3 0.98 1.89 2.78 3.52 7.12 

Male Speaker 

KF-P     3.342 4.42 3.95 6.23 9.89 

KF-1 1.44 2.99 3.14 4.99 6.41 
KAF-2 2.83 3.32 3.49 4.23 6.10 
KF-3 1.09 2.90 3.89 4.63 5.23 

Female Speaker 

 
Table 4 

Signal to Noise Ratio (SNR) improvement for Factory Noise Corrupted Speech 

SNR(dB) -10 -5 0  5 10 

KF-P 2.321 4.61 5.12 7.02 9.17 
KF-1 1.33 2.98 3.03 4.98 5.3 
KAF-2 1.54 2.51 3.38 4.52 6.09 
KF-3 1.98 2.89 4.78 5.52 7.12 

Male Speaker 

KF-P 2.34 4.12 4.95 8.23 9.90 
KF-1 1.54 2.89 3.45 5.69 7.21 
KAF-2 1.93 3.12 3.19 5.13 6.10 
KF-3 1.99 3.90 4.19 6.13 7.93 

Female Speaker  

4.4. Harmonic to Noise Ratio (HNR)  

The HNR parameter is used, extensively by OES research community for quality measurement [30]. 

The HNR parameter is calculated using the freely available speech analysis software VoiceSauce [31], 

according to following settings: segment length and overlap are 30 milliseconds and 15 milliseconds 

respectively, fundamental frequency estimated using STRAIGHT [32] method in the range of 50 to 
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120 Hz (OES fundamental frequency falls in this range), and prediction order is set to 12. The Figure 2 

has shown the mean HNR improvement of 3dB over previously available methods, particularly for 

vowels \a\, \i\. 

5. Conclusion  

The system successfully implemented the subband Kalman filtering, by providing optimized pa-

rameters for speech and noise. The optimal AR coefficients for speech and its variance are estimated 

utilizing Weighted Linear Predication (WLP). On the other hand, noise AR coefficients are estimated 

by calculating Noise Weighting Function (NWF) for subband signals. The method has outperformed 

all the available subband Kalman filtering both for normal and Oesophageal Speech (OES) signals 

objectively. The normal speech has shown its superiority through improved PESQ scores and SNR 

improvement, while for OES signals, improvement has been shown by improved HNR. 
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Abstract-This paper presented the modification to Esophageal 
Speech (ES) enhancement using Adaptive Gain Equalizer (AGE) 
for modifying the voicing source. However, the voicing source 
used previously with AGE, obtained using conventional Linear 
Predication (LP) vocal tract transfer function (AGE-LP), has 
produced low quality speech due to sensitivity to background 
noise. The better quality ES can be obtained by estimating 
voicing source through Iterative Adaptive Inverse Filtering uti­
lized Weighted Linear Prediction (WLP) vocal tract transfer 
function (AGE-IAIF). The system performance evaluated through 
Harmonic to Noise Ratio (HNR), and system has shown 3 dB 
enhancement by AGE-IAIF over previously enhancement method 
AGE-LP. 

Index Terms-Filter bank, Iterative adaptive inverse filtering, 
Esophageal speech, Linear predictive coding, adaptive gain equal­
izer 

I. INTRODUCTION 

The treatment of laryngeal cancer in advanced stages needs 
removal of vocal folds, which resulted in no voicing source 
for speech production. The alternative voicing source should 
be used for speech production, i. e. using esophagus or exter­
nal devices. There are two methods uses esophagus, named 
Esophageal Speech (ES) and Tracheo-Esophageal Speech 
(TES), but with different air source. The other method Elec­
trolarynx uses the external devices for production of voicing 
source. The air source for ES comes, by inhaling air into lower 
part of esophagus and then exhaled which vibrates the walls of 
esophagus and provides voicing source. The irregular vibration 
of voicing source in ES effects the quality of produced speech. 
Therefore speech enhancement methods needed for improving 
the quality of ES. 

In literature, Linear Prediction (LP) decomposition of 
speech into source and filter components is used for enhancing 
the quality of ES and TES [1], [2]. The source component 
of speech signal replaced by LF source signal model for 
enhancing the ES [3]. The better quality ES is obtained 
modifying the formants of ES [4]-[7]. B esides LP source 
filter decomposition, other methods also used for enhancement 
purposes such as statistical methods [8], pole modification, 
Kalman filtering [9]-[15], and Adaptive Gain Equalizer (AGE) 
in modulation domain etc [16]. 

The paper has presented the ES enhancement method, con­
sidering the decomposition of ES into source filter components 
using Iterative Adaptive Inverse Filtering (lAIF) instead of LP 
decomposition. The AGE is used to modified the source of 
ES. The system is compared with [16], where source signal 
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has been obtained using LP decomposition. The performance 
is measured through Harmonic to Noise Ratio (HNR). The 
paper is organized as follows, Sec. II discussed the system 
model components, such as IAIF decomposition, AGE etc. 
Sec. III discussed the experimental parameters, with results in 
Sec. IV and Conclusion in Sec. V.  

II. SYSTEM MODEL 

The figure 1 shows the system model, with its components: 

e(n) 

Synthesis 

s(n) 

Fig. 1. Proposed System 

A. Analysis (Iterative Adaptive Inverse Filtering (IAIF) 

The Fant's theory of source-filter considered voiced speech 
signal as output of linear time-invariant vocal tract filter, 
excited by quasi periodic impulses [17]. Mathematically, 

s( n) = e( n) * v ( n) * r ( n) (1) 

where s ( n) is speech signal, e ( n) source or excitation signal, 
v ( n) the vocal tract transfer function, and r ( n) is the lip 
radiation. The lip radiation r ( n) effect can be canceled, by 
approximating and modeling, as a derivative, and single zero 
FIR filter, 

r ( n) = 1 - ar ( n - 1), 0.95 < a < 0.99 (2) 

In z-transform, after canceling lip radiation, we have: 

S(z) = E(z)V(z) (3) 
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where S(z), E(z) and V(z) are z-transform of s( n), e( n) and 
v ( n) respectively. The inversing filtering of speech signal S(z) 
is used to obtained source signal E(z): 

E(z) = S(z)jV(z) (4) 

The transfer function V(z) is compulsory component for 
inverse filtering, which can be estimated either by conventional 
LP or by IAIF source-filter decomposition. The IAIF uses 
Weighted Linear Prediction (WLP) for V(z) as shown in Fig. 
2. The Fig. 2 showed the complete IAIF system, where glottal 
transfer function G(z) of order 1 for reducing the glottal 
source effect for optimal vocal tract transfer function V(z). 
The optimal vocal tract transfer function V (z) of order p 
(WLP) used to estimates source signal e ( n) through inverse 
filtering. In literature, V (z) and E (z) can be estimated using 
minimum-maximum phase decomposition [IS], [19], IAIF 
[20] and LP decomposition [17] etc. This paper considered the 
IAIF decomposition (Weighted Linear Prediction (WLP)), and 
Linear Prediction (LP) decomposition [17], for source signal. 

s( ) 

WLP Analysis (ordlf I) 

G(z) 

'W''''C '''';'' 

WLP Analysis 
Ofdej (p) 

V(z) """'r"'d" 
m'l";o, 

e (n) 

Fig. 2. Block diagram of IAIF(WLP) [20], [21] 

1) Conventional Linear Prediction: The linear prediction 
model assumed, that speech signal can be estimated by a linear 
combination of p previous samples, mathematically: 

p 

s( n) = L aks( n - k) (5) 
k=l 

where s( n) is estimated speech signal at n instant, ak pre­
diction coefficients, and p order of prediction. The prediction 
error E is used to estimated the ak coefficients by minimizing 
its sum of squares [17], [22], 

p 

E = L(s( n) - L aks( n - k))2 

n k=l 
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(6) 

8E p 

8 = 0 ===} L ak L s( n - k)s( n - j) = L s( n)s( n - j) 
ak k=l n n 

(7) 
Solving the above equation for ak (1 ::; j ;::: p) , the vocal 
tract transfer function can be estimated as: 

1 
V(z) = p _ 1- Lk=l akz k 

(S) 

which subsequently uses equation. (4) for source signal e( n) 
[22]. 

2) Weighted Linear Prediction (WLP): The WLP is a mod­
ification to linear prediction, introducing temporal weighting 
function to the square prediction error according to following 
mathematical relation [23], [24]: 

p 

E = L(s( n) - L aks( n - k))2W( n) (9) 
n k=l 

where W( n) is the weighting function and given as short-time 
energy function [25]: 

M 

W( n) = L s2( n  - k) (10) 
k=l 

where M is number of samples for calculating energy 
(M=16 used in this experiment). Solving for prediction error, 
prediction coefficients ak can be obtained as [23], [24]: 

p 

8E 
- = 0 
8ak 

(11) 

L ak L W( n)s( n - k)s( n - i) = L W( n)s( n)s( n - i) 
k=l n n 

(12) 
The obtained predication coefficients ak(l ::; i ;::: p) are used 
for vocal tract transfer function V(z)(equation. (S)), which 
gives source signal e( n) according to equation. ( 4). 

B. Adaptive Gain Equalizer (AGE) 

The AGE is robust and standalone speech enhancement 
method which enhanced periodic part of speech signal by 
raising Signal to Noise Ratio (SNR) of sub-bands shown 
in figure. 3 [26]-[30]. The modified source signal e( n) is 
obtained by applying AGE process to source signal e( n) . 

1) Filterbank( Analysis): The source signal e( n) passed 
through uniformaly-spaced subbands in a modified Short-Time 
Fourier Transform (STFT) filterbank of K bandpass filters 
[31], each having the impulse response of hk( n) [26]-[30]1. 

(13) 

The * is convolution operator. Each subband signal ek ( n) is 
enhanced by weighting it, according to SNR gain function 
wk( n) of that sub-band, 

(14) 

I This section based on [32]-[35] 
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e( ) 

Analysis ( ilter 

Synthesis 

ern) 

Fig. 3. Block diagram AGE 

2) Weighting function: The wk( n) is the ratio of short 
term average and long term average of each sub-band signal, 
according to following mathematical relation: 

. {( ILk,J( n) ) Pk } 
wk( n)=mm 

L ( )  
,Lk 

opt.lLk,s n 
(15) 

where ILk,J is short term or fast average, ILk,s long term or 
slow average, Lopt the optimal suppression level to control 
Wk ( n), Lk the limiting threshold, and Pk the gain rise exponent 
component. The short term and long term averages are given: 

where CXk = !k,s�k,a 
is forgetting factor constant, fk,s and 

Tk,a are sampling frequency and time constant for sub-bands 
respectively. 

if ILk,J( n) ::; ILk,s( n  - 1) 
otherwise 

(17) 
where f3k = !k.8�k.b 

is a positive constant control the noise 
level utilizing time constant Tk,b 

3) Synthesis: The enhanced version of source/excitation 
signal e( n) is obtained by sununing all the sub-band signals 
according to following relation: 

K-1 

e( n) = L ek( n) (18) 
k=O 

C. Synthesis 

The enhanced version of source signal is used to excite 
the vocal tract transfer function V(z) (utilizing prediction 
coefficients (ak ( n)) for enhanced version of ES signal, 

8(z) = E(z)V(z) (19) 

The time domain enhanced signal s is obtained by inverse 
z-transform of 8(z). 
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III. EX PERIMENT PARAMETERS 

The ES Spanish vowels \a\, \e\, \i\, \0\, \u\(20 utterance 
for each vowel) are used for this experiment, recorded from 
rehabilitation center. The sampling frequency for the recording 
was 44100 Hz and down-sampled to 16000 Hz for computa­
tional efficiency. The 6 persons who have very good quality of 
ES, recorded their voices. The prediction order P is 12 for for 
both LP and WLP, the segment size and overlap size are set 
30ms and 15 ms respectively for estimation of voicing source. 
The AGE system which modified the voicing source e ( n) has 
16 channel filterbank, with decimation factor of 4. The other 
parameter used in AGE are shown in table I. 

TABLE I 
PARAMETER VALUES FOR ADAPTIVE GAIN EQUALIZER 

Parameter 

Tk,a 
Tk b 
Lo�t 
Lk 
Pk 

IV. RESULTS 

A. Harmonic to Noise Ratio (HNR) 

Value 

30 msec 
3 msec 
0--+ 20 
30 dB 
1 

The Harmonic to Noise Ratio (HNR), is one of the objective 
acoustic measure for speech signal engineers to quantify noise 
level in the signal, calculated as the ratio of harmonic energy 
and noise energy components of speech [36]. The estimation of 
HNR assumed that speech signal consists of periodic and addi­
tive noise components. The methods [36], [37] considered, the 
original speech signal f( t), as the concatenation of the waves 

fk( T)(k signal period) from each pitch period, where T is the 
number of pitch period. Averaging fk(T) for large number n 
gives us the better estimation of harmonic components, 

fA(T) = t fk( T) 
n k=l 

The energy of the harmonic components is calculated as, 

T 

H = n Lf1(T) 
T=l 

The noise components N energy is defined as, 

n Ti 

N = L L [fi -fA(T)]2 
i=l T=O 

(20) 

(21) 

(22) 

where Ti is the period length in samples. The HNR is given 
by as, 

H 
HNR = lO[oglO 

N 
(23) 

The VoiceSauce [38], freely available speech analysis soft­
ware, used to calculate the HNR. The parameters used for 
HNR calculation are, 25 milliseconds windows size with 
1 millisecond overlap, fundamental frequency is constrained 
between 50 Hz to 120 Hz (ES fundamental frequency falls in 
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Vowel \a\ 
-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

-9 
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AGE-IAIF 
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- 1 0 L----'-----"-----'-----'---�'------'-----'------"-----'-----'----':-----'�:s=S:::::::;::=�,J 
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Lopt 

Fig. 4. Mean Harmonic to Noise Ratio (HNR) for vowel a 

1 

1 

3 

5 

-6 

-7 

Vowel \e\ 
� 

� W 

1-Original 
F I AGE-IAIF 

c::::::J AGE-LP 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Lopt 

Fig. S. Mean Harmonic to Noise Ratio (HNR) for vowel e 

this range). The HNR obtained for different values of Lopt 
(optimal suppression gain controller). The figures 4 and 5 has 
shown improvement of 3 dB for AGE-IAIF in comparison 
to AGE -LP [16], particularly rising trend observed between 
Lopt optimized values 8 - 16. The starting and ending values 
of Lopt has decreasing effect in HNR for all the vowels, 
therefore system should be tuned between Lopt values of 8-16 
for optimal results. On global scale, system has provided better 
results for vowels \a\, \e\, \i\but vowels \o\and \u\has not 
produced optimal results, as shown in figures 7 and 8, with 
only 1 dB improvement. 

V. CONCLUSION 

The paper has discussed the performance of ES enhance­
ment by modifying voicing source signal through AGE system. 
The voicing source has been obtained by applying IAIF 
to speech signal, by estimating vocal tract transfer function 
through Weighted Linear Prediction (WLP). The AGE modi­
fied the voicing source and compared with previously available 
system, where conventional LP vocal tract transfer function 
estimation used for voicing source estimation [16] Using the 
Harmonic to Noise Ratio (HNR) criterion, its has been shown 
that AGE with IAIF (AGE-IAIF) provided better results in 
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Fig. 6. Mean Harmonic to Noise Ratio (HNR) for vowel i 
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Fig. 7. Mean Harmonic to Noise Ratio (HNR) for vowel 0 
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Fig. 8. Mean Harmonic to Noise Ratio (HNR) for vowel u 

comparison to AGE with conventional LP (AGE-LP) [16]. In 
future system can be further improved by implementing vocal 
tract formant enhancement as well the voicing source with 
other prediction methods such as stabilized WLP, extended 
LP etc. 
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Abstract— This paper presents a single channel speech enhance-
ment technique based on sub-band modulator Kalman filtering for
laryngeal (normal) and alaryngeal (Esophageal speech) speech
signals. The noisy speech signal is decomposed into sub-bands and
subsequently each sub-band is demodulated into its modulator and
carrier components. Kalman filter is applied to modulators of all
sub-bands without altering the carriers. Performance of the proposed
system has been validated by Mean Opinion Score (MOS) for laryngeal
and Harmonic to Noise Ratio (HNR) for alaryngeal speech. An
improvement of 20% has been observed in MOS over sub-band Kalman
filtering for laryngeal speech, while 3 to 4 dB enhancement in HNR
has been observed for alaryngeal speech over the full-band Kalman
filtering.

Keywords— Kalman filter, Autoregressive, speech enhancement

I. INTRODUCTION

Speech enhancement is an important branch of speech
signal processing that aims at suppression of noise to make
a speech signal more intelligible. An enhanced version of a
speech signal is useful for speech recognition applications,
mobile communication and coding etc. There has been many
algorithms proposed for speech enhancement including but not
limited to spectral subtraction [1], [2], Wiener filtering [3],
adaptive gain equalizer [4], [5], [6], [7] and Kalman filtering
[8], [9].

Kalman filtering is considered to be an optimal speech
enhancement algorithm that relies on a Minimun Mean Square
Error (MMSE) [10], [8] based method. The Kalman filtering
based speech enhancement has several advantages over other
speech enhancement methods, e.g. speech production model
using Linear Predication (LP), inherited to Kalman filtering
modeling. Kalman filter produces optimum results for non-
stationary signals and do not need stationary condition like
Wiener filtering [10].

The Kalman filter is used for single channel speech enhance-
ment by Analysis-Modification-Synthesis (AMS) frame work,
where noisy speech signal is segmented into frames using
short time Fourier transform (STFT), then a modification of
amplitude of STFT is applied using Kalman filtering followed
by inverse STFT and synthesis for enhanced speech signal [11].
Paliwal introduced the Kalman filtering for speech enhancement
[8]. Further modification to Kalman filtering has been observed
using the EM algorithm for autoregressive (AR) estimation
for Kalman filtering [12], [13], [14]. The enhancement for
colored noise corrupted speech has also been investigated in
[15] using Kalman filter. The most important and less complex
modification done by sub-band based Kalman filtering for

speech enhancement is by dividing the speech signal into a
number of sub-bands followed by Kalman filtering of each
sub-band [16], [17].

The Esophageal (E) speech is one type of alaryngeal speeches
used for speech production after laryngeal cancer treatment,
where larynx has been removed and normal speech in no more
possible. The E speech has low quality due to irregular vibration
of Paryngo-esophageal (PE) segments, and enhancement of E
speech has been extensively treated by LPC analysis/synthesis
[18], [19], [20], [21], [22], statistical methods [23], [24],
[25] and detailed analysis of E speech by our group can be
consulted from [26], [27], [28], [29], [30], [31], [32]. The
Kalman filter has been used for enhancement of E speech
along with pole stabilization and, improvement observed over
LPC analysis/synthesis framework [33], [34].

Recent research has used the approach to model speech sig-
nals as the combination of low and high frequency components,
called modulators and carriers respectively. The modulators
(low frequency) are considered to be most important for
speech intelligibility, i.e. if speech modulators are replaced
by a constant value, while preserving carriers, unintelligible
speech is obtained, in comparison to the case of preserving
modulators and replacing carriers with constant value retains
the intelligibility of speech [35]. Mathematically,

x(n) = m(n)c(n) (1)

where m(n) and c(n) are modulators and carriers respectively.
A trend has been observed in recent years that speech
enhancement by modifying modulators of speech signal is
done using different techniques. Results justify the use of
modulator filtering, e.g. convex optimization, and center of
gravity (CoG) demodulation, used to enhance speech signals
[36], [37].

This paper introduces a modification to sub-band based
Kalman filter based speech enhancement [16], by decomposing
sub-bands into its modulators and carriers components. The
Kalman filter is applied to modulators of sub-bands instead
of sub-bands directly. Performance of the system has been
validated by Mean Opinion Score (MOS) and spectrogram
for laryngeal (normal) speech by comparing it to sub-band
Kalman filtering [16], and Harmonic to Noise Ratio (HNR)
used for alaryngeal (E speech) by comparing it with full-band
Kalman filtering E speech enhancement [33], [34]. The next
sections introduce system components followed by results and
conclusion.
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Fig. 1. Sub-band Modulator Kalman Filtering Based Speech Enhancement

II. SYSTEM DESIGN

Fig. 1 shows the proposed system used for the enhancement
of noisy speech signal x(n).

A K bands band-pass filter is used to divide the input speech
signal x(n) into sub-bands according to:

xk(n) = hk(n) ∗ x(n) (2)

where hk(n) is impulse response of the kth sub-band filter and
∗ is convolution operator. Each sub-band is demodulated into
modulator mk(n) and carrier ck(n) coherently according to
CoG demodulation (Section III-A).

xk(n) = mk(n)ck(n) (3)

Sub-band modulators are modified by Kalman filtering (Section
IV), given by:

x̂k(n) = m̂k(n)ck(n) (4)

where m̂k(n) is modified modulator for sub-band k. The final
enhanced signal is obtained by adding all the modified sub-
bands according to the synthesis equation:

x̂(n) =

K∑
k=1

x̂k(n) (5)

III. DEMODULATION

Natural signals such as speech can be represented by the
corresponding high frequency and low frequency components,
called carriers and modulators respectively [35], [38], [39],
[40]. The speech signal can be represented (in modulators and
carriers sense) by equation (1). The decomposition of speech
signal into m(n) and c(n) can be acquired coherently or non-
coherently [35], [39], [40]. The non-coherent demodulation

estimates the modulators and carriers independent of each other,
while in coherent demodulation carriers are estimated first and
then modulators are estimated based on the equation (1). In
this paper, coherent demodulation has been used because of
its advantages over the non-coherent and in the present case,
carrier estimation is done using spectral center of gravity [41],
[35], [42].

A. Spectral Center of Gravity Carrier Estimation

The demodulation framework works on sub-bands, the filter
bank divides the speech signal into sub-bands, demodulation
process decomposes each sub-band into its carrier and modu-
lator components.

1) Sub-band Instantaneous Frequency: The first step in
calculating the carrier is to detect the instantaneous frequency
ωk(n) of each sub-band. The center of gravity approach
estimates the ωk(n) as the average frequency of instantaneous
spectrum of xk(n) [41], [35]. The instantaneous spectrum of
xk is calculated according to:

Sk(ω, n) =
∑
p

g(p)xk(n+ p)e−jωp (6)

where g(p) is a window function (hamming window of length
128 is used for this experiment). Center of Gravity (CoG)
estimation of ωk(n) is given by:

ωk(n) =

∫ π
−π ω|Sk(ω, n)|

2dω∫ π
−π |Sk(ω, n)|2dω

(7)

The phase φk(n) is obtained by the following equation:

φk(n) =

n∑
p=0

ωk(p) (8)

2) Carrier estimation: Carrier ck(n) obtained by exponen-
tiating φk(n):

ck(n) = exp[jφk(n)] (9)

The carrier estimation for sub-band k gives the related
modulator as:

mk(n) = xk(n)/ck(n) = xk(n)c
∗
k(n) (10)

IV. SUBBAND MODULATOR KALMAN FILTERING

It is considered that modulators of speech signal can be
represented by an autoregressive (AR) process, i.e. output
of an all-pole system excited by white Gaussian noise and
represented by a difference equation:

mk(n) =

p∑
j=1

ak,jmk(n− j) + wk(n) (11)

where ak,j(n), p and wk(n) are Linear Predication Coeffi-
cients (LPC), order of AR process and input white Gaussian
noise(with zero mean and variance σ2

k,w) respectively for the
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kth sub-band modulator mk(n). The observed noisy modulator
for sub-band k is given by sk(n) as:

sk(n) = mk(n) + vk(n) (12)

where vk(n) is white Gaussian additive observation or mea-
surement noise with zero mean and variance σ2

k,v for sub-band
k. The equations given above can be given in the state space
representation as:

mk(n) = Fkmk(n− 1) + gwk(n) (13)

sk(n) = HTmk(n) + vk(n) (14)

where mk(n) = [mk(n− p+ 1)mk(n− p+ 2) · · ·mk(n)].

Fk =


0 1 0 ... 0
0 0 1 ... 0

...
...

... ...
...

0 0 0 ... 1
−ak,p −ak,p−1 −ak,p−2 ... −ak,1

 (15)

gT = HT = [0, 0, . . . , 1] (16)

The Kalman filter provides the estimate of mk(n), providing
observation sk(1), sk(2), .....sk(n) [15] as:

m̂k(n) = Fkm̂k(n− 1) +Kk(n)[sk(n)−HTFkm̂k(n− 1)]
(17)

Kk(n) = Pk(n|n− 1)H[Rk +HTPk(n|n− 1)H]−1 (18)

Pk(n|n− 1) = FkPk(n− 1|n− 1)FTk + gQkg
T (19)

Pk(n) = [I −Kk(n)h
T ]Pk(n|n− 1) (20)

where Kk(n) is Kalman gain, Pk(n|n − 1) is a priori error
covariance matrix and Pk(n) is error covariance matrix, Rk and
Qk are measurement noise covariance matrix and input noise
covariance matrix respectively for sub-band k. The system is
initialized using the noisy modulator:

m̂k(0) = mk,0 = [sk(1), sk(2), . . . , sk(p)] (21)

Pk(0|0) = Pk,0 = diag[Rk, Rk, . . . , Rk] (22)

At time instant n estimated sample is given by following
relationship:

m̂k(n) = HT m̂k(n) (23)

A. Parameter Estimation

The estimation of LPC coefficients and noise variances for
sub-band modulators is necessary for optimized results of
Kalman filter. These parameters of each sub-band are calculated
based on EM algorithm given in [12] and it is given below
breifly:

• Noisy only segment from modulator of sub-band k is
detected, and additive observation noise σ2

k,v is estimated.
• LPC parameters ak,n and variance σ2

k,nmodulator are
calculated for noisy speech modulator.

• Input noise variance is estimated by σk,w =
σk,nmodulator − σ2

k,v
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Fig. 2. Mean Opinion Score for Sub-band Kalman filter (SKF) and Sub-band
Modulator Kalman Filter (SMKF).

• Kalman filter is implemented with noisy parameters, then
enhanced version of modulator is used to estimate ak,n,
iterated until optimal estimate is obtained. In our work,
the number of iteration are 3 as stated in [12].

V. COMPARATIVE PERFORMANCE ANALYSIS

A. Laryngeal Speech

Performance of the system has been tested using female
speech signal sampled at 16 KHz, and corrupted by factory
and engine noise signals with different Signal to Noise Ratio
(SNR) (-10, -5, 0, 5, 10 dB). The number of filters in the filter
bank effects the results, for this work, the number of filter used
are 64 which gave better results in reducing residual noise.
The Kalman filter uses the LPC order p of 10, and window
size and step sizes are 30 and 15 millisecond respectively. This
paper presents the comparison between systems based on MOS
and spectrogram.

1) Mean Opinion Score (MOS): Fig. 2 shows the comparison
of enhanced version speech signal with Sub-band Kalman
Filtering (SKF) and Sub-band Modulator Kalman Filtering
(SMKF) for MOS values. A maximum of 20% improvement
can be observed and SMKF outperforms SKF for all SNR
cases.

2) Spectrogram: Fig.3 and 4 show the spectrogram of speech
signal corrupted by engine noise and factory noise at -10dB
SNR. Although SMKF shows some loss in formants in upper
frequencies but in comparison to SKF, there is less residual
noise in enhanced speech signal. Significant improvement can
be observed in factory noise corrupted speech signal.
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B. Alaryngeal Speech

The E speech vowels \a\, \e\,\i\, \o\, \u\, and
\bodega\have been used for this experiment, which are
recorded from alaryngeal speech rehabilitation center (6
persons) with the sampling frequency of 44100 Hz and down-
sampled to 16000 Hz for computational efficiency.

1) Harmonic to Noise Ratio (HNR): VoiceSauce [43] was
used to calculate HNR, with following settings, fundamental
frequency range: 60 to 120 Hz (E speech fundamental frequency
range is in between 60-120), frame length and overlap was set
to 30 and 15 millisecond respectively and LPC order was set
to 12. Fig. 5 shows the improvement of around 4 dB over the
full-band Kalman filtering [33], [34], and 2 dB over sub-band
Kalman filtering.

VI. CONCLUSION

The modification to sub-band Kalman filtering by applying
Kalman filter to modulators of sub-band by coherent decompo-
sition has been successfully implemented for noisy laryngeal
and alaryngeal speeches (E speech). Results thus obtained
show improvement in speech enhancement while Kalman
filtering is used in modulator domain in comparison to its
traditional use. The improvement in MOS and spectrogram
has shown the system capability of the proposed for reducing
noise from noisy laryngeal speech, and HNR improvement has
confirmed the system performance over the previous methods
for E speech. The future work can be the utilization of other
demodulation process, e.g. non-coherent demodulation and
convex optimization demodulation [36], [44], [45].
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Abstract—Adaptive gain equalizer (AGE) is a commonly used
single-channel speech enhancement algorithm. AGE and its
variants has been widely used for speech enhancement appli-
cations. There are two broad categories of these variants. The
first deals with its improvement in time-frequency domain with
readjustment of the used parameters and the second one deals
with performing the main filtering operation in modulation
frequency domain. This paper evaluates the working of AGE
in modulation frequency domain with the use of a demodulation
technique which solves the demodulation process as a convex
optimization problem. The performance of the modified AGE
is compared with the traditional AGE and another modulation
frequency domain AGE based on demodulation using the spectral
center-of-gravity. These used performance measures are Signal
to Noise Ratio Improvement(SNRI), Spectral Distortion(SD) and
Mean Option Score(MOS).

Index Terms—Convex demodulation, Center of Gravity, filter
bank, Adaptive Gain Equalizer.

I. INTRODUCTION

Different types of background noise corrupts the otherwise
clean speech signals in everyday communication. A phone call
can be disturbed by a variety of noises present nearby ranging
from computer fan noise to factory noise. There have been
a variety of methods for reducing noise from speech signal,
e.g., spectral subtraction [1] and optimum Wiener filtering [2].
The commonly used method for reducing noise is spectral
subtraction but it has an inherent problem of generating
musical noise due to spectral flooring [3]. There have also
been some efforts to reduce this musical noise such as [4]
but this improvement has the tendency of producing audible-
distortion causing listening discomfort even compared to the
unprocessed signal [5]. Reducing noise without generating
artifacts was proposed in [6] but this method fails to address
unvoiced speech.

The Adaptive gain equalizer (AGE) is a time domain
speech enhancement algorithm in which the speech signal
is amplified based on signal-to-noise (SNR) estimates in
subbands. A signal is divided into subbands for calculation
of a gain which is independent for each band. The algorithm
has shown advantages over contemporary techniques because
of its low complexity implementation, no requirement of voice
activity detector (VAD) and has no presence of musical noise
as a result of controlled gains [7]. Additionally, hardware
implementations of AGE [8] indicate its importance in speech
processing applications.

As an alternative to time domain processing, an imple-
mentation of AGE in the modulation domain was presented
in a recent study [9]. This method was mainly inspired by

the performance advantages of splitting the signal into its
frequency bands. The modulation system assumes a speech
signal as composed of a modulator and a carrier. Thus the
signal is represented by

𝑥(𝑡) = 𝑚(𝑡)𝑐(𝑡) (1)

where 𝑚(𝑡) denotes the low frequency part of the signal, called
the modulator, that modulates a high frequency carrier 𝑐(𝑡).
Studies have shown that the modulators of a speech signal
are more important for the intelligibility of the speech signals
than their counterpart carriers [10]. Modulation systems are
based on sub-band modulators and hence perfectly fit the AGE
system which works on the sub-bands of the signal. Besides
the fact that the study in [9] has reported improvement in
performance measures in speech enhancement in comparison
to time-domain AGE, the proposed center of gravity (COG)
demodulation does not involve an optimization step, the need
of which we state in the following.

In this work, we consider AGE in modulation domain
by demodulation process as a convex optimization problem
presented in [11]. The reason of adaptation of this technique
for AGE in modulation domain is mainly the ambiguity
associated with the demodulation process of having unlimited
number of possible modulator-carrier pairs. Moreover, proven
ability of this method for efficiently demodulating a variety of
carriers such as harmonic, stochastic and time-varying ones
further justifies its usage.

An account of related work in modulation domain and a
brief introduction of AGE is provided in Section II. Section III
describes a modulation system, a summary of a demodulation
technique called spectral center of gravity that used in AGE
implementation given in [9]. Section IV starts with an intro-
duction of solving demodulation as an optimization problem
and completes with the description of the proposed model of
AGE. A comparison of performance of the proposed model is
presented in Section V with its time-domain and modulation
domain counterparts. Finally, some conclusive remarks about
this work are drawn in Section VI with an outline of possible
future works in the area.

II. BACKGROUND

AGE can attenuate noise in speech signals in real time with
low computational complexity [12]. It uses an FIR filter bank
to divide a speech signal into subbands where speech in each
subband is amplified independently. It was also shown that
the system can adopt itself for different types of noise. The
proposed AGE method using the mixed analog and digital
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hybrid approach yield around 13 dB speech enhancement [13].
The AGE was originally intended for the digital domain, but
[13] provides an analog implementation which does not use
quantization and digitization and is best suited for battery
powered applications. A hybrid solution to overcome problems
related to a digital and an analog implementation of the AGE
is found in [14].

Zadeh [15] introduced the modulation domain as a two
dimensional bi-frequency system, where time variation of the
ordinary frequency is the second dimension. Since then, there
have been reasonably large interest in this field for various
tasks related to speech processing. Atlas et al. used the concept
of coherent modulation for the target talker enhancement in
speech enhancement [16]. They proved that working in modu-
lation domain can increase the speech intelligibility. Coherent
modulation using the frequency reassignment has been used
for speech enhancement and for demodulation of a signal into
modulator and carrier [17]. Speech polluted by wind noise has
been enhanced by using coherent modulation comb filtering as
reported in [18]. Although the modulation filtering has mostly
been used for the purpose of speech enhancement, we find
some of its applications in audio compression as well [19].
It was showed that a 32 kb/s/channel outperformed MPEG-
1 coded at 56 kb/s/channel (both at 44.1 kHz), using the
modulation technique.

III. MODULATION DOMAIN AND AGE

An acoustic spectrum is transformed by short-time Fourier
transform into the modulation domain spectrum at a particular
acoustic frequency. It has been observed that speech intel-
ligibility can be altered by operating on modulator part of
the signal. Shamma [20] reported that auditory cortex neu-
rons possibly decompose the acoustic contents into spectro-
temporal modulation contents. It has been found that if the
modulators of the speech signal are replaced by constant
amplitude modulators, while carriers are preserved, speech
does not remain intelligible anymore. However, when the
modulators are preserved but carriers are altered, the speech is
intelligible [10]. A modulation frequency system is described
by the following steps:

∙ Filter bank to get sub-band signals
∙ Demodulation i.e., decomposition of each sub-band signal

into a modulator and a carrier.
∙ Analysis of the modulators of the sub-band signals by

discrete Fourier transform of each modulators
∙ Modification of the modulators (e.g. linear filtering)
∙ Re-modulation (recombination of modified modulators

with original carriers)
∙ Synthesis of signals

The modulation system’s filter bank divides the wide-band
signal into K narrow-band sub-bands. The signal 𝑥(𝑡) is passed
through the filter bank set of band-pass filters ℎ𝑘, which
renders the sub-band signals 𝑥𝑘(𝑡).

𝑥𝑘(𝑡) = ℎ𝑘(𝑡) ∗ 𝑥(𝑡) (2)

s where ∗ is convolution operator. The demodulation pro-
cess decomposes the sub-band signal into its envelope and
carrier. It is efficient to decimate the sub-band signals so
that the redundant samples may be removed. Modification
of the modulators is done by the modulation filtering 𝑔(𝑡),
i.e., 𝑚𝑘(𝑡) = 𝑚𝑘(𝑡)𝑔(𝑡). A modulation spectrogram and
modulation analysis can be done by computing the Fourier
transform along the time-axis of the spectrogram (magnitude)
or by utilizing the spectrum of the envelop signals, which
gives the modulation frequency along the horizontal axis and
acoustic frequency along the vertical axis. Re-modulation is
the process in which modified modulators 𝑚𝑘(𝑡) are com-
bined with the original carriers, obtained in the process of
demodulation, to get the modified sub-band signals 𝑥̃𝑘(𝑡).
The synthesis process reconstructs the modified signal 𝑥̃(𝑡)
using the modified sub-band signals 𝑥̃𝑘(𝑡), according to the
following equation. Interpolation must be performed prior to
this stage if decimation was done before.

𝑥̃(𝑡) =

𝐾∑

𝑘=1

𝑥̃𝑘(𝑡) (3)

Following is a brief description on one of the methods used
for coherent carrier detection which is also used in this work,
apart from convex optimization demodulation process.

A. Spectral Center of Gravity Carrier Estimation

In the Center-of-Gravity(CoG) approach, instantaneous fre-
quency 𝜔𝑘(𝑛) is defined as instantaneous spectrum average
frequency of 𝑥𝑘(𝑡) at time 𝑡 [21]. An instantaneous spectrum
with short-time Fourier transform is computed as,

𝑆𝑘(𝜔, 𝑡) =
∑

𝑝

𝑔(𝑝)𝑥𝑘(𝑡+ 𝑝)𝑒−𝑗𝜔𝑝 (4)

where 𝑔(𝑝) is a short spectral-estimation window. The in-
stantaneous frequency 𝜔𝑘(𝑡) of the sub-band signal 𝑥𝑘(𝑡) is
estimated as,

𝜔𝑘(𝑡) =

∫ 𝜋

−𝜋
𝜔∣𝑆𝑘(𝜔, 𝑡)∣2𝑑𝜔∫ 𝜋

−𝜋
∣𝑆𝑘(𝜔, 𝑡)∣2𝑑𝜔

(5)

The phase 𝜙𝑘(𝑡) of the carrier is computed as follows

𝜙𝑘(𝑡) =
𝑡∑

𝑝=0

𝜔𝑘(𝑝) (6)

The carrier 𝑐𝑘 is

𝑐𝑘(𝑡) = 𝑒𝑗𝜙𝑘(𝑡) (7)

and the complex valued modulator 𝑚𝑘(𝑡) is given by

𝑚𝑘(𝑡) = 𝑥𝑘(𝑡)𝑐
∗
𝑘(𝑡) (8)
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Fig. 1. Adaptive gain equalizer in modulation domain

B. Adaptive Gain Equalizer System

The AGE consists of a filter bank and each sub-band is
weighted by a gain function which amplifies the signal when
speech is present and keeps the noisy part of the signal, where
no speech is present, to unity [7]. A filter bank of K bandpass
filters divides the input signal 𝑥(𝑛) into K sub-bands 𝑥𝑘(𝑛).

𝑥𝑘(𝑛) = ℎ𝑘(𝑛) ∗ 𝑥(𝑛) (9)

Here ℎ𝑘 is the impulse response of the filter bank sub-band k
and ∗ denotes the convolution. The output signal 𝑥̃(𝑛), with
the amplified speech signal, is computed as

𝑥̃(𝑛) =

𝐾∑

𝑘=1

𝐺𝑘(𝑛)𝑥𝑘(𝑛) (10)

where 𝐺𝑘(𝑛) is the AGE weighting function which amplifies
the signal when speech is active and is given by

𝐺𝑘(𝑛) = 𝑚𝑖𝑛

{(
𝐴𝑘(𝑛)

𝐿𝑜𝑝𝑡.𝐵𝑘(𝑛)

)𝑝𝑘

, 𝐿𝑘

}
(11)

where 𝐿𝑜𝑝𝑡 is the optimized suppression level for gain function
and 𝑝𝑘 gain rise exponent constant. 𝐿𝑘 is a limiting threshold
limiting gain function value. Fast average 𝐴𝑘(𝑛) and slow
average 𝐵𝑘(𝑛) of sub-band 𝑘 calculated according to:

𝐴𝑘(𝑛) = 𝛼𝑘𝐴𝑘(𝑛− 1) + (1− 𝛼𝑘)∣𝑥𝑘(𝑛)∣ (12)

where 𝛼𝑘 = 1
𝑓𝑠𝑇𝑎

is forgetting factor constant and 𝑓𝑠 is
sampling frequency.

𝐵𝑘(𝑛) =

{
𝐴𝑘(𝑛) if 𝐴𝑘(𝑛) ≤ 𝐵𝑘(𝑛− 1)

(1 + 𝛽𝑘)(𝐵𝑘(𝑛− 1) otherwise
(13)

where 𝛽𝑘 = 1
𝑓𝑠𝑇𝑏

is a positive constant control the noise
level. Based on the above mentioned principle of AGE, a
speech signal modulator can also be enhanced by the equalizer.
Modulation domain separates each sub-band signal into a
carrier and a modulator. While only modulators are considered
here, the AGE is implemented on each modulator to enhance
the speech. The system is shown in figure 1. The mathematics
for AGE in the modulation domain is the same as for AGE in
the sub-band domain, the long term average and the short term
average are calculated for each sub-band modulator, instead
of the sub-band itself. The gain function is multiplied with
the modulator of the sub-band to yield a modified modulator
𝑚̃𝑘(𝑛) which is then used with the carrier in the reconstruction
stage of the modulation system.

𝑚̃𝑘(𝑛) = 𝑚𝑘(𝑛)𝐺𝑘 (14)

𝑥̃𝑘(𝑛) = 𝑐𝑘(𝑛)𝑚̃𝑘(𝑛) (15)

The synthesized signal 𝑦(𝑛) is finally calculated by adding up
all the components.

𝑥̃(𝑛) =

𝐾∑

𝑘=1

𝑥𝑘(𝑛). (16)

IV. CONVEX OPTIMIZATION AND THE PROPOSED MODEL

One inherent problem with the demodulation technique is
the unfortunate presence of unlimited number of possible
yet valid modulator-carrier pairs. This predicament can be
understood by taking example of a sinusoidal signal that
is composed of multiple frequency sinusoids. Such a signal
can be decomposed into more than one legitimate modulator
and carrier pairs, that are equally correct mathematically.
Similar is the case with speech signals when the problem of
demodulating it into modulator and carrier is dealt. Thus there
is need to add some conditions to the problem which can
make the algorithm result into the desired solution. A general
optimization problem minimizes a given objective function
while fulfilling a set of equality and unequally constraints. If
the objective function and inequality constraints are all convex
and the equality constraints are all affine, the problem is called
a convex optimization problem [22]. Although the modulation
problem of equation 1 is not convex as it is, two methods
have been suggested in [11] for constraining modulation into
convex restrictions. One solution is to work in logarithm
domain where the optimization variables can be defined simply
as the logarithm of the squared linear optimization variables
𝑚(𝑡) and 𝑐(𝑡). A convex relation is then obtained by just
summing the two logarithmic domain variables. The other
method of making the problem convex is to work in linear
domain where the process involves eliminating the carrier 𝑐(𝑡)
and minimization of only the modulator signal is done. The
final expression obtained in linear domain convex optimization
is given by the following:

Minimize 𝐶𝑚(𝑚(𝑡)) + 𝐶𝑐(𝑚(𝑡)−1𝑥(𝑡))
where the modulator cost function 𝐶𝑚 can be any convex
function but the carrier cost function 𝐶𝑐 must be both convex
and non-decreasing as a requirement of making the problem
a convex one. We have followed the linear domain convex
optimization method in our work. The interested reader is
referred to [11] for detailed analysis of these methods.

V. COMPARATIVE PERFORMANCE ANALYSIS

A. Mean Opinion Score(MOS)

The Mean Opinion Score (MOS) calculated by observing
the clean speech signal processed by a system to check how
much it degrades the clean speech signal. Fig. 2 shows a
female speech signal processed by a system where SNR has
been set -10dB for both Engine Noise (EN) and Factory
Noise (FN). The system with convex demodulation has MOS
value around 3.5 for EN and 3.8 for FN which provides
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less degradation as compare to CoG modulation and AGE
system where is average MOS observed 3, and less than 3,
respectively.

B. Spectral Distortion

Fig.3 shows the Spectral Distortion(SD) for female speech
signal contaminated by EN and FN at the SNR of -10dB. The
increasing value of 𝐿𝑜𝑝𝑡 increases SD up to 10dB for EN when
the system uses AGE while for convex demodulation average
SD around 7dB and for CoG demodulation its around 9dB, but
for FN, SD for all the system observed around 3dB average.
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C. Signal to Noise Ratio Improvement(SNRI)

Fig. 4 shows the Signal to Noise Ratio Improvement (SNRI)
for AGE, MAGE (CoG and Convex demodulation) for a
female speech signal distorted by EN and FN having SNR
of -10dB. The MAGE methods with convex demodulation has
the highest SNRI for all the values of 𝐿𝑜𝑝𝑡 and around 5dB and
8dB improvement over the AGE and MAGE (CoG) methods
for EN. But for FN system show improvement after 𝐿𝑜𝑝𝑡 = 12.
The MAGE (CoG) in start improved significantly but with
increasing value of 𝐿𝑜𝑝𝑡 MAGE (Convex demodulation) has
better improvement.

D. Spectrogram Analysis

Fig. 5 and 6 shows spectrogram of original signal with
processed signal with AGE, MAGE (convex and CoG de-
modulation) for FN and EN respectively. The MAGE (convex
demodulation) improvement can be observed in term of speech
formants being not effected, as visible in spectrogram for both
EN and FN.

VI. CONCLUSION

An alternative method of demodulation has been proposed
for AGE in the modulation frequency domain. The presented
method solves the demodulation process as a convex opti-
mization problem, thereby avoiding the inherent problem of
multiple solutions of a demodulation algorithm. We have tested
the proposed method for various conditions and magnitudes of
noise injected in a clean speech signal. The performance of
our method has been validated by mean opinion score, spectral
distortion, signal to noise ratio improvement and spectrogram
analysis in comparison to two other techniques.



Fig. 5. Spectrogram with Factory Noise(FN) (SNR=-10dB)

Fig. 6. Spectrogram with Engine Noise(FN) (SNR=-10dB)
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Abstract-The vocal fold modulate the air source from lungs 
to produce voicing source for speech production. The vocal fold 
essential part of speech production resides in larynx. The larynx 
cancer treatment necessitate removal of larynx, in consequences 
normal speech production destroyed due to no voicing source 
available. The new voicing source provided artificially or by 
use of Paryngo-esophageal(PE) segments. The voicing source 
or residual signal for Esophageal(E) speech uses PE segment, 
has irregular behavior, and produces degraded quality speech. 
This paper discussed and evaluated the residual signal or 
voicing source enhancement of E speech by incorporating speech 
enhancement method Adaptive Gain Equalizer(AGE), in time­
frequency and modulation frequency along with formants modifi­
cation by Line Spectral Frequencies(LSF) and Linear Predicative 
Coding(LPC). The system validated by measuring Harmonic to 
Noise Ratio(HNR) temporally and maximum of 4dB enhancement 
has been observed in comparison to Kalman filtering based 
enhancement where enhancement observed maximum of 2dB. 

Index Terms-Filter bank, formant enhancement, Esophageal 
speech, Linear predictive coding, adaptive gain equalizer 

I. INTRODUCTION 

The normal speech production involves voicing source for 
speech production and is an essential part. The air source from 
lungs modulated by vocal folds resides in larynx, for voicing 
source. B ut sometime excessive smoking and alcohol use cause 
laryngeal cancer. The treatment for advanced stage laryngeal 
cancer is removal of larynx, in consequence, voicing source 
lost. The other voicing source is needed for speech produc­
tion, either Pharyngo-esophageal(PE) segment in esophagus or 
artificial voicing source used. PE is used for both Esophageal 
(E) speech and Treacheoesophageal(TE) speech, as voicing 
source but the air source for both methods differ [1]. Electro­
larynx(EL) uses external devices for voicing source production 
which lacks air source. Air source for TE comes from lungs by 
Tracheoesophagal Puncture(TEP)(a hole between esophagus 
and trachea) , while for E speech air delivered to esophagus 
through mouth and then released in controlled manner which 
vibrate PE segment and provides voicing source. B ut the 
problem with speech produce either by TE or E speech pro­
duction methods has low fundamental frequency as well high 
perturbation in fundamental frequency. The jitter(frequency 
perturbation), shimmer(amplitude perturbation) are high and 
Harmonic to Noise Ratio(HNR) low as compared to normal 
speech due to irregular vibration of PE. Formant frequencies 
and spectral slope also has different behavior than normal 
speech [2]. Despite low quality and low intelligible speech 
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due to irregular vibration of PE and low pressure air source 
for voice source, E speech still preferred methods over other 
methods because of it does not need surgery and external 
devices for speech production. The improved quality E speech 
can be obtained by using signal processing methods to voicing 
source particularly, by utilizing source filter theory of speech 
production by decomposing the E speech in to source and filter 
part by Linear Predicative Coefficients(LPC) analysis. 

II. RELATED WORK 

In literature, LPC analysis synthesis used to determine vocal 
tract transfer function and excitation source of E speech and 
excitation source replaced by LF model for speech quality 
enhancement [1], [3]. Improvement has been measured of E 
speech by using LPC and LF model with modified fundamen­
tal frequency which has unstable behavior in E speech [4]. The 
enhanced version of E speech acquired by applying statistical 
approach to E speech by voice conversion from ES to normal 
speech [5]. The formant modification based synthesis used for 
E speech enhancement [6]. The use of Kalman filters along 
with pole stabilization has been used for enhancement of E 
speech significantly [7]-[13]. Formant structure modification 
and excitation source synthesis is used for better quality E 
speech [14]-[16]. The Adaptive Gain Equalizer(AGE), robust 
and simple speech enhancement method used for normal 
speech signal enhancement with lots of variation [17]-[19]. 
The new signal analysis technique modulation frequency used 
as well for speech enhancement, speech separation, and recog­
nition [20]-[22]. 

This paper introduces the system for improving the quality 
of E speech from database of Spanish vowels \a\, \e\, \i\, 
\0\, \u\, \bodega\, recorded from speech rehabilitation center 
from 6 best E speaker with sampling frequency of 44100 
Hz. LPC based analysis/synthesis used for residual signal and 
vocal tract transfer function. AGE in time-frequency and in 
modulation-frequency domain is used for enhancing residual 
signal. Formant enhancement is acquired with Line Spectral 
Frequency(LSF), and new LPC based formant enhancement 
[23]. The system utilization is measured, temporally by Har­
monic to Noise Ratio(HNR), spectrally by spectrogram where 
formants enhancement observed. The system also provided 
comparison of HNR with Kalman filtering based E speech 
enhancement. 
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III. METHODOLOGY 

LPC analysis is used for decomposing the signal into source 
and filter part. The speech signal is Pre-Emphasized(pre-emp) 
for boosting high frequencies and LPC analysis provides us 
with the residual signal e( n) for speech signal and filter coef­
ficients a(n). Residual signal e(n) passed through AGE and 
Modulation AGE(MAGE) for reducing noise from e(n), while 
a( n) passed through formant enhancement methods based on 
[23]. LPC synthesis used the enhanced residual signal e( n) and 
enhanced filter coefficients a( n) to obtained enhanced version 
of speech signal s (n), passed by de-emphasized( de-emp) filter, 
as shown in Fig.I. The AGE/MAGE and formant modification, 
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Fig. 1. Simulation setup 

different components of system introduces in next sections 
followed by results and conclusion. 

A. Adaptive Gain Equalizer(AGE) 

This section introduces the concept of AGE along with 
the modified version MAGE incorporating the modulation 
domain [22] [17] I. Ideally AGE is considered to be robust and 
low complex speech enhancement methods when compared 
to other enhancement methods. The AGE method enhanced 
speech signal quality by raising the SNR of sub-bands of 
speech signal obtained by applying filter bank. The LPC 
analysis provide us with residual signals and vocal tract 
transfer function. The residual signal e(t) obtained from LPC 
analysis, passed through a filterbank of K bandpass filters, for 
K sub-bands each denoted by ek(n). 

(1) 

Here hk (n) is the sub-band k impulse response, * denotes the 
convolution. The uniformly-spaced sub-bands in a modified 
Short-Time Fourier Transform(STFT) filterbank is used, where 
frequency response of each sub-band is roughly-rectangular 
[22]. The residual signal e( n) modeled as a sum of sub-band 
signals according to 

K 

e(n) = L ek(n) (2) 
k=l 

) This section based on [17]-[19], [24] 

The output modified and enhanced version of the system given 
by following equation, 

K-I 

e(n) = L gk(n)ek(n) (3) 
k=O 

where e( n) is enhanced voicing source for ES, and gk (n) is 
the weighting function for improving signal quality. 

1) Gain function: The gain function gk (n) calculated as 
the ratio of short term average(fast) Ak (n) and long term 
average(slow) Bk(n) of k sub-band. 

. {( Ak (n) ) Pk } 
gk(n) = mm Lopt.Bk(n) ,

Lk (4) 

where Lopt is the optimized suppression level for gain func­
tion, Pk gain rise exponent constant and Lk limiting threshold 
for gain function. Fast average Ak(n) and slow average Bk(n) 
of sub-band k calculated according to: 

where fY-k = fs�a is forgetting factor constant, is and Ta are 
sampling frequency and time constant respectively. 

if Ak(n) :s: Bk(n - 1) 
otherwise 

(6) 
where fJk = fS�b is a positive constant control the noise level 
and Tb is a time constant. 

B. Modulation Adaptive Gain Equalizer(MAGE) 

The modulation frequency domain divides the sub-band 
signals into modulators and carriers. The modulators are low 
frequency components of signal while carriers are consider 
high frequency components. The residual signal sub-bands 
decomposed into modulators and carriers by demodulation 
processing by utilization the method based on Center of Grav­
ity(CoG) decomposition [22], [24]. The modulators mk(n) of 
residual sub-bands modified according to 

ek(n) = ck(n).mk(n) 
mk(n) = mk(n).gk(n) 

(7) 

(8) 

The enhanced version e( n) signal obtained by synthesis equa­
tion (3) and gain for system given by (4) and variables for 
gain are, 

Ak(n) = fY-kAk(n - 1) + (1 - fY-k)lmk(n)1 (9) 

and Bk(n) calculated according to equation (6) . 
The Fig. 2, and Fig. 3 shows the AGE and MAGE system 

respectively. 

C. Formant Enhancement 

The enhancing of formants peaks and spectral valleys sig­
nificantly improves the quality of speech signal. The formants 
enhancement methods used in this paper are Line Spectral 
Frequency(LSF) and new LPC-based formant enhancement 
taken from [23]. 
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Hz with 6 different people who has good quality E speech. 
The following E speech Spanish vowel \a\, \e\, \i\, \0\, 
\u\, \bodega\is used for testing the system. The recorded 
speech signal down-sampled to 16000 Hz for computation 
efficiency. The pre-emp filter used with ex = 0.98. For the 
LPC analysis, window size for frames set 30ms, with frame 
overlap of 15ms and order of LPC set 16. The AGE with 
and without modulation used values shown in table I. The 
filter bank used 64 number of bandpass filter with decimation 
factor of 4, although number of filter doesn't effect system 
behavior. The modification of formants used values for new 
LPC based enhancement are "( = 0.2 and 0 = 200Hz, while 
for LSF based enhancement ex = 0.4 used. 

TABLE I 
PARAMETER VALUES FOR SYSTEM EVOLUTION 

Parameter Value 

Ta 30 msec 
Tb 3 msec 
Lopt 0-+20 
Lk 30 dB 
Pk 1 

V. RESULTS 

A. Spectrogram 

The noise between the utterance of vowels has been signifi­
cantly removed and enhancement of vowel by systems can be 

1) LSF-based Formant Enhancement: LSF based formant observed in the Fig. 6 and Fig. 7 for both MAGE and AGE 
enhancement modify LSF positions by shifting LSFs closer to with Lopt = 6 for \bodega\. The Fig. 4 shows unprocessed 
each other for spectral sharpening [23], [26]. The modification signal spectrogram where noise can be observed between the 
of LSFs obtained according to: utterance of words. Fig. 5 shows the spectrogram of processed 

A dL 1 signal through AGE without decomposing it into source and 
lsf i = lsfi-l +di-1 + d2 + d2 ((lsfHl-lsfi-l)-(di+di-1)) filter part, although noise reduction has been achieved but ,-1 t 

(10) formants still mixed and quality of signal still not good. Fig. 

here lsfi and IS)i are original and modified LSF of a frame 6 and 7 shows spectrogram of processed signal where residual 

respectively. signal and formants enhancement applied for MAGE and AGE 

d (I f l f) (11) systems, and improvement in noise reduction as well quality of i = ex s i+l - S i 
signal has significant improvement by listening speech signal. 

here ex is enhancement controlling constant and should be 
between 0 and 1. 

2) LPC-based Formant Enhancement: LPC based formant 
enhancement modified power spectrum of LPC model and 
modified power spectrum used to re-evaluating LPC model. 
Following steps used to modified formants of LPC model [23], 

• Power spectrum of LPC 
• Low energy part of power spectrum decreased by multi­

plying small constant "(, while no modification done to 
formants. 

• Re-evaluation of new LPC from the modified power 
spectrum 

LPC based formant enhancement give better results as com­
pare to LSF based formant enhancement. 

IV. SIMUL ATION SETUP 

The system tested on the E speech signals recorded from 
speech rehabilitation center with sampling frequency of 44100 

B. Harmonic to Noise Ratio(HNR) 

Fig.8 and 9 shows mean Harmonic to Noise Ratio(HNR) 
in dB for sustained vowels \a\,\e\, \i\o\, \u\and \bodega\. 
The HNR ratio calculated by using the VoiceSauce [27], by 
setting the frame size of 30ms and frame step of 15ms and 
fundamental frequency measurement bounded between 60Hz 
to 120 Hz because of E speech fundamental frequency fall in 
this range [2]. The mean values of HNR taken for all frames 
and for different values of Lopt. The results shows improve­
ment after Lopt = 10, and maximum HNR improvement of 5 
dB has been obtained for vowel \0\. 

C. Comparision with Kalman Filtering approach 

The Kalman filtering and poles stabilization is used for 
enhancing E speech by applying Kalman filtering to E speech 
without decomposing into source and filter and then modified 
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Fig. 5. Processed E speech signal (without decomposing into source and 
filter part),Lopt = 6 

poles by stabilization it as given in [7]. The average enhance­
ment in HNR has been observed around 2dB for most of cases, 
in comparison MAGE and AGE produces enhancement around 
4dB which can be observed in Figs.8,9. 

VI. CONCLUSION 

The improved HNR has validated the system capability to 
improve quality of E speech. The system successfully removed 
noise, as well tried to enhanced residual signal for better and 
intelligible E speech signal. The MAGE modulation frequency 
system provides better enhancement in comparison to AGE 
and overall both systems outperformed Kalman filtering based 
system [7]. Along with voicing source enhancement, formant 
enhancement significantly improves quality of E speech in 
comparison to poles modification by shifting upward [7] when 
conducted listening test. 

Although LPC analysis/synthesis provides good estimation 
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Fig. 7. Processed E speech Signal ( AGE),Lopt = 6 

of voicing source signal, but as comparison to normal speech 
this estimation in not perfect and modeling of PE segment can 
provides better voicing source signal which can be improved 
and modified through this system. The future can be to provide 
optimized value of Lopt by having noise information from 
modeling of PE segment. 
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ABSTRACT
This paper evaluates speech enhancement by filtering in the
modulation frequency domain, as an alternative to filtering
in conventional frequency domain. Adaptive Gain Equal-
izer (AGE) is a commonly used single-channel speech en-
hancement algorithm. A recently introduced class of sig-
nal transformations called modulation transform has suc-
cessfully made its place alongside classical time/frequency
representations. This paper presents an implementation of
AGE within modulation system, for the purpose of enhanc-
ing the speech signal. The successful implementation of
the proposed system has been validated with various per-
formance measurements, i.e., Signal to Noise Ratio Im-
provement (SNRI), Mean Opinion Score (MOS) and Spec-
tral Distortion (SD). A spectrogram analysis is also pre-
sented to further substantiate the performance of this work.

KEYWORDS
Speech enhancement, Adaptive gain equalizer, Modulation
domain.

1 Introduction

Speech as the main part of the communication systems, is
usually degraded during the transmission by different types
of noise, e.g., Gaussian noise, engine noise, periodic noise
and other interferences. There are a variety of methods for
reduction of noise from speech signal, e.g., spectral sub-
traction (frequently used for noise reduction) [1] and opti-
mum Wiener filtering [2]. Adaptive Gain Equalizer (AGE)
[3] is a noise reduction method that focuses on enhancing
the speech signal instead of suppressing the noise. The
speech enhancement is carried out by weighting the sub-
bands in time-frequency domain according to an estimate
of the Signal-to-Noise Ratio (SNR). This method offers
better result in terms of low complexity, low delay, low
distortion and there is no need for Voice Activity Detec-
tor (VAD) .
The modulation system assumes that a speech signal is
composed of a modulator and a carrier. The signal is rep-
resented by,

x(t) = m(t)c(t) (1)

where m(t) denotes the low frequency part of the signal,
called modulator, and it modulates a high frequency carrier

c(t). Studies have shown that the modulators of speech sig-
nal are most important for the intelligibility of the speech
signal. The importance of the modulator in speech signals
brought the attention of many researchers .
AGE implementation has been intended so far in time-
frequency domain, but here an implementation of AGE in a
modulation system is proposed. Modulation systems which
are based on sub-band modulators, perfectly fit the AGE
system which works on the sub-bands of the signal.

1.1 Literature Survey

Zadeh [4] is considered to be the pioneer of the field of
modulation domain who suggested a two dimensional bi-
frequency system, where time variation of the acoustic fre-
quency is the second dimension of frequency. Atlas et
al. used the concept of coherent modulation for the tar-
get talker enhancement in speech enhancement [5]. They
proved that modulation domain moderately increases the
speech intelligibility . Coherent modulation using the fre-
quency reassignment has been used for speech enhance-
ment and for demodulation of a signal into modulator and
carrier [6]. Li et al. described the theory behind modulation
filtering which offers a new approach to modifying non-
stationary signals e.g., speech. They presented the coher-
ent modulation analysis based on instantaneous frequency
estimation using conditional mean frequency. In addition,
they showed that the proposed method accurately estimates
the carriers and modulators of the signals [7]. Speech pol-
luted by wind noise has been enhanced by using coherent
modulation comb filtering by King et al. [8]. Although the
modulation filtering has mostly been used for the purpose
of speech enhancement, Vinton et al. also used it for au-
dio compression. They showed that a 32 kb/s/channel out-
performed MPEG-1 coded at 56 kb/s/channel (both at 44.1
kHz), using the modulation technique [9]. The concept of
homomorphic demultiplication is connected to the modula-
tion spectral analysis/synthesis and it was outlined by Atlas
et al. in [10]. Clark et al. showed in [11] the effectiveness
of modulation filtering by measuring the empirical mod-
ulation frequency response and got a near-ideal response
performance, and 25 dB improvement has been shown for
suppressing undesired modulation frequencies over inco-
herent modulation. Clark presented the Center of Gravity
(COG) method for decomposition of a sub-band signal, and
he used coherent modulation filtering for the interpolation



of long gaps in acoustic signals [12].
The concept of AGE for the reduction of noise in speech
signals, has shown its success in real time and proven to be
a low complexity system [3]. The method used an FIR filter
bank to get the required results and it was also shown that
the system adapted itself for different types of noise. The
proposed AGE method using the mixed analog and digital
hybrid approach yielded around 13 dB speech enhancement
[13]. The AGE was originally intended for the digital do-
main, but [14] provides an analog implementation which
does not use quantization and digitization and it is also best
fitted for battery powered applications. A hybrid solution
to overcome problems related to a digital and an analog im-
plementation of the AGE is found in [15].

1.2 Main Contribution

The main contribution of this paper is to combine the AGE
and modulation system domain for speech enhancement.
Hence, the advantage of benefits from both of the fields
has been taken to build up a new system. This approach
has proven to be robust, flexible in implementation and
has been validated by performance measures like Signal
to Noise Ratio Improvement (SNRI), Mean Opinion Score
(MOS) and Spectral Distortion (SD). Section 2 briefly in-
troduces the modulation system, section 3 introduces the
concept of AGE and its operation in the modulation fre-
quency domain and section 4 evaluates the proposed sys-
tem. Section 5 concludes this work with a summary and
future research directions in the area.

2 Modulation System

A modulation domain spectrum is obtained from a certain
acoustic spectrum by taking short-time Fourier transform
(STFT) of the speech signal at the given acoustic frequency.
The speech signal modulators are the most important com-
ponents for speech intelligibility. Shamma [16] reported
that auditory cortex neurons possibly decompose the acous-
tic contents into spectro-temporal modulation contents. It
has been found that if the modulators of the speech sig-
nal are replaced by constant amplitude modulators, while
carriers are preserved, speech is not intelligible. However
when the modulators are preserved but carriers are altered,
the speech is intelligible [17]. Modulation domain actu-
ally decomposes the speech, or other natural signals, into
modulators and carriers whereafter the modulators of the
signals are analyzed. A general framework for modulation
frequency domain analysis, and filtering is given in figure
1. A modulation frequency system is described by the fol-
lowing steps:

• Filter bank to get sub-band signals

• Demodulation i.e., decomposition of each sub-band
signal into a modulator and a carrier.

 

 

 

 

 

Envelope 
detection 

Carrier 
detection 

LTI 

Sy
nt

he
si

s 

 

 

Fi
lte

r b
an

k 

X

 

 
� �

 

 
�

 

Figure 1. A general framework of the modulation filtering
and analysis system [17]

• Analysis of the modulators of the sub-band signals by
discrete Fourier transform of each modulators

• Modification of the modulators (e.g. linear filtering)

• Re-modulation (recombination of modified modula-
tors with original carriers)

• Synthesis of signals

The modulation system filter bank divides the wide-
band signal into K narrow-band sub-bands. The signal x(t)
is passed through the filter bank’s set of band-pass filters
hk, which renders the sub-band signals xk(t).

xk(t) = hk ∗ x(t) (2)

where ∗ denotes the convolution operator. The demodula-
tion process decomposes the sub-band signal into its enve-
lope and carrier. Its efficient to decimate the sub-band sig-
nals so that the redundant samples may be removed. Mod-
ification of the modulators is done by the modulation fil-
tering which mostly uses linear time invariant filters g(t),
i.e., m̂k(t) = mk(t)g(t). A modulation spectrogram and
modulation analysis can be done by computing the Fourier
transform along the time-axis of the spectrogram (mag-
nitude) or by utilizing the spectrum of the envelop sig-
nals, which gives the modulation frequency along horizon-
tal axis and acoustic frequency along vertical axis. Re-
modulation is the process in which modified modulators
m̂k(t) are combined with the original carriers, obtained in
the process of demodulation, to get the modified sub-band
signals x̂k(t). The synthesis process reconstructs the mod-
ified signal x̂(t) using the modified sub-band signals x̂k(t),
according to the following equation. Interpolation must be
performed prior to this stage if decimation was done before.

x̂(t) =

K∑

k=1

x̂k(t) (3)

Envelope detection is used for demodulation of a sig-
nal and it is the most important part of the modulation fre-
quency system. There are two types of envelope detectors
mostly used, coherent envelope detection and incoherent
envelope detection. Magnitude, or magnitude-like, opera-
tions are used to estimate modulators in incoherent detec-
tion, while coherent detection use the carrier estimate oper-
ations. Incoherent envelope detection detects the envelope



and carrier independently and coherent detection uses the
carrier estimation for the calculation of the envelope. Fol-
lowing is a brief description about one of the methods used
for coherent carrier detection which is used in this work.

2.1 Spectral Center of Gravity Carrier Estimation

In this recently introduced method of the center-of-gravity
approach, instantaneous frequency ωk(n) is defined as in-
stantaneous spectrum average frequency of xk(t) at time t
[18]. An instantaneous spectrum with short-time Fourier
transform is computed as,

Sk(ω, t) =
∑

p

g(p)xk(t+ p)e−jωp (4)

where g(p) is a short spectral-estimation window. The in-
stantaneous frequency ωk(t) of the sub-band signal xk(t)
is estimated as,

ωk(t) =

∫ π

−π
ω|Sk(ω, t)|2dω∫ π

−π
|Sk(ω, t)|2dω

(5)

The phase φk(t) of the carrier is computed as follows

φk(t) =

t∑

p=0

ωk(p) (6)

The carrier ck is
ck(t) = ejφk(t) (7)

and the complex valued modulator mk(t) is given by

mk(t) = xk(t)c
∗
k(t) (8)

3 Adaptive Gain Equalizer System

As discussed in [3], the AGE consists of a filter bank with
different band-pass filters. Each sub-band is weighted by
a gain function which amplifies the signal when speech is
present and keeps the noisy part of the signal, where no
speech is present, to unity. A filter bank of K bandpass fil-
ters divides the input signal x(n) into K sub-bands xk(n).

xk(n) = hk ∗ x(n) (9)

Here hk is the impulse response of the filter bank sub-band
k and ∗ denotes the convolution. The time domain signal is
modeled as a sum of sub-band signals, according to:

x(n) =

K∑

k=1

xk(n) =

K∑

k=1

(sk(n) + wk(n)) (10)

where sk(n) is the desired speech signal related to kth sub-
band, while wk(n) is the additive noise in the sub-band k.
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Figure 2. Adaptive gain equalizer in modulation domain
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Figure 3. Experiment setup

The output signal y(t), with the amplified speech signal, is
computed as

y(n) =

K∑

k=1

Gk(n)xk(n) (11)

where Gk(n) is the AGE weighting function which ampli-
fies the signal when speech is active.

3.1 Gain Function

Two terms used for the calculation of the gain function are;
a long term (slow) average As,k(t) and the short term (fast)
average Af,k(t). The short term average, for sub-band k,
Af,k(n) is calculated as

Af,k(n) = αkAf,k(n− 1) + (1− αk) | xk(n) | (12)

where αk is a small positive constant, given by

αk =
1

Ts,kFs
(13)

where Fs is the sampling frequency in Hz and Ts,k is a
time constant in seconds. In the same manner, a slow
average is computed as

As,k(n) = (1 + βk)As,k(n− 1) (14)

if As,k(n− 1) ≤ Af,k(n), and

As,k(n) = Af,k(n) (15)



if As,k(n− 1) > Af,k(n)
where βk is a small positive constant. The AGE gain func-
tion is computed as:

Gk(n) =

(
Af,k(n)

As,k(n)

)pk

(16)

where pk ≥ 0, and As,k(n) > 0.

3.2 Modulation Domain AGE

The functionality of the AGE has been extended to work
in the modulation domain for speech enhancement. Modu-
lation domain separates each sub-band signal into a carrier
and a modulator. While only modulators are considered
here, the AGE is implemented on each modulator to en-
hance the speech. The system is shown in figure 2. The
mathematics for AGE in the modulation domain is the same
as for AGE in the sub-band domain, the long term average
and the short term average are calculated for each sub-band
modulator, instead of the sub-band itself. The gain function
is multiplied with the modulator of the sub-band to yield a
modified modulator m̂k(n) which is then used with the car-
rier in the reconstruction stage of the modulation system.

m̂k(n) = mk(n)Gk (17)
x̂k(t) = ck(n)m̂k(n) (18)

The synthesized signal y(n) is finally calculated by adding
up all the components.

y(n) =

K∑

k=1

x̂k(n). (19)

The gain function Gk is given by

Gk = min (L,
Af,k

Lopt.As,k + ε
) (20)

where Af,k denotes short term average and As,k denotes
the long term average,L is a limiting threshold which limits
the gain function’s value and Lopt is an optimum level of
control on the value of the gain function. The averages are
computed as:

Af,k(n) = αfAf,k(n− 1) + (1 − αf ) | m(n) | (21)
As,k(n) = αsAs,k(n− 1) + (1− αs) | m(n) | (22)

As,k(n) = min (As,k(n), Af,k(n)) (23)

where αf and αs are time constants of the short term and
long term averages, respectively.

4 Evaluation of The Proposed System

Figure 3 shows the experimental setup, where s(n) is the
clean speech signal, v(n) is a noise signal and x(n) is
the sum of speech and noise signals (s(n) + 10

−SNR
20 v(n))
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Figure 4. MOS for the processed male speech signal (up-
per) and female speech signal (lower) with noise at 10 dB
SNR

scaled by desired level of Signal to Noise Ratio (SNR). Ms,
Cs, Mx, Cx, Mv and Cv are the signal matrices of mod-
ulators and carriers for s(n), x(n) and v(n) respectively.
The gain matrix G is calculated by passing Mx through
AGE system. This G is then multiplied with the Mx, Ms

and Mv, whereafter the re-modulation and the synthesis
processes generate the output signals yx(n), ys(n), yv(n),
as depicted in figure 3. The system was evaluated with
the following parameter setings. L = 1, Lopt= 1 to 20,
Ts = 4s and Tf = 0.04s. The speech signals comprise
male Fs=16 kHz and female Fs=16 kHz speech signals and
the noise signals are scaled so as to have 10 dB, 5 dB, 0
dB and -5 dB SNR. Noise signals used were Engine Noise
(EN), Factory Noise (FN), Gaussian Noise (GN), Tonal
Noise (TN) and Impulse Noise (IN). The performance mea-
surement was evaluated by the Signal to Noise Ratio Im-
provement (SNRI), Perceptual Evaluation of Speech Qual-
ity (PESQ) and Spectral Distortion (SD). SNRI of male
speech signal for TN at 0 dB SNR with Lopt = 20 was
around 10 dB and for other noises was between 4 dB to 6



Table 1. Spectral distortion (SD) results

Noise SNR 0 dB 10 dB
Lopt range 0 to 5 5 to 20 0 to 5 5 to 20
Speaker Male

SD for FN [dB] -18 to -4 -4 to -2 -18 to -4 -4 to -2
SD for IN [dB] -18 to -4 -4 to -2 -18 to -4 -4 to -2
SD for TN [dB] -18 to -6 -4 to -2 -18 to -4 -6 to -2
Speaker Female

SD for FN [dB] -34 to -12 -12 to -2 -34 to -15 -15 to -4
SD for IN [dB] -34 to -15 -15 to 0 -18 to -6 -6 to -2
SD for TN [dB] -34 to -15 -15 to -7 -34 to -18 -18 to -8
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Figure 5. SNRI plots of two speech enhancement methods

dB. The female speech signal also had SNRI of 9 dB for
TN and around 3 to 5 dB for EN, FN, GN, IN at 0d B SNR.
PESQ has been calculated by comparing s(n) and ys(n)
which gives an objective measure of how much degrada-
tion the system has introduced on the speech signal due to
introducing the AGE gain function. The objective Mean
Opinion Score (MOS) as computed by the PESQ for most
of the tests given above was 3, which is considered fair
for speech signals. Experiments have been performed to
find out the optimal value on the critical system parame-
ter Lopt, for different noise cases and for different speaker
situations. Figure 4 shows the MOS values for both male
and female speech signals at 10 dB of noise SNR. It is in-
teresting to note that female speech has higher values of
MOS than male speech under similar conditions. This ob-
servation is attributed to the fact that female speech with
higher pitch is less affected by some noises. Moreover, the
SD is very low for Lopt < 5 and then increases rapidly
with increasing Lopt values for all tests. For male speech
signal, the SD at Lopt = 20 is around -2 dB and -4 dB for
FN,GN,TN and IN and some of them are shown in table
1. The female speech signal has different behavior than the

male speech signal on SD. For female speech, SD is found
to be -2 dB for EN, GN, IN and -4 dB for FN and -8 dB for
TN at the Lopt=20.
The proposed method was also compared against the
speech enhancement method by AGE proposed in [3]. It
was observed that the proposed method has better perfor-
mance than the reference method of [3]. One such com-
parison is shown in figure 5 where a male speech signal
having mixed with 5 dB SNR factory noise is enhanced by
two methods and the proposed method clearly outperforms
its counterpart in [3].

4.1 Spectrogram Analysis

The spectrogram of a male speech signal that has been
mixed with gaussian noise at 10 dB SNR and the spec-
trogram after enhancement with the propsed AGE system,
are given in figure 6. The AGE algorithm converges af-
ter 0.2 seconds for all test cases, whereafter it may be ob-
served that the disturbing noise is reduced while the for-
mants of the speech are maintained. Enhanced signal yx(n)
has shown the formants very clearly after the processing.
Although the Gaussian noise is spread throughout the fre-
quency plane, the AGE works very efficiently, but a little bit
speech signal energy has also been lost. The spectrogram
of male speech signal mixed with tonal noise at 0 dB SNR
and enhanced male speech signal by the AGE was also ob-
served. The tonal noise which had all of its energy around 1
kHz has been reduced by the AGE, i.e., reduced its energy,
while maintaining the formants of speech. Moreover, the
impulse noise at 0 dB SNR, which is similar to gaussian
noise in spreading its energy through all the frequencies,
has been successfully eliminated.

5 Conclusion

A novel approach of speech enhancement in modulation
frequency domain has been explored and the promising
results obtained by using the proposed method have been
presented in this paper. The adaptive gain equalizer (AGE),
which has shown its advantages already in digital, analog



Figure 6. Spectrogram of noisy male speech (upper) having
Gaussian noise at 10 dB SNR and the enhanced signal by
the proposed method (lower)

and hybrid domains by its simplicity, low complexity for
being robust to different noisy environments, has been
implemented in the modulation frequency domain in this
paper. The detailed analysis of the system has put light on
its advantages and disadvantages, i.e. where the evaluation
section highlights the compromise between low SD and
high SNRI. The system provides good improvement on the
female speech signal, with better SNRI, low SD, fair MOS,
and output speech signal sounds good. The maximum
SNRI obtained for the female speech signal analysis was
approximately 9 dB and SD of female speech for some
noise has been shown 0 dB.
The spectrogram analysis provides another view of these
results. The AGE gain function adapts during the first 0.2
seconds. This start-up time can be reduced by varying
the integration time, but changing the integration time
has obvious consequences on the signal integrity and the
noise reduction performance. Moreover, the proposed
method has shown its potential as a better alternative to the
traditional methods of speech enhancement.
Future work is to implement this system in real time and
other speech enhancement methods may also be tried in
modulation domain.
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Enhancement of Spanish Oesophageal
Speech Vowels using Coherent Subband
modulator Kalman Filtering
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Abstract. This paper proposes an Oesophageal Speech (OES) enhancement method, based on Kalman filtering. The Kalman
filter is applied to modulators of OES frequency subbands instead of the fullband signal. The OES frequency subbands are
decomposed into modulators and carriers components using coherent demodulation. In comparison with fullband Kalman
filtering and pole stabilization, the proposed technique shows better results. The system performance is evaluated objectively
and subjectively using the Harmonic to Noise Ratio (HNR) and Mean Opinion Score (MOS) respectively. Results have shown
that Kalman filter in subband modulators processing is robust and efficient, improving the HNR by 4 to 5 dB for all Spanish
vowels.

Keywords: Alaryngeal speech, Kalman filtering, filterbank, synthesis/analysis, modulation frequency domain

1. Introduction

The loss of speech production after total laryngectomy (advanced stage laryngeal cancer treatment) is
one of extreme consequences for the larygectomee (patient). To regain the ability to produce speech, al-
ternate means of speech production are needed. In the literature, there are three speech production meth-
ods currently available: Oesophageal Speech (OES), Treach-Oesophageal Speech (TES) and Electrolar-
ynx (EL). OES and TES use esophagus as a voicing excitation to vocal tract, while EL uses an external
vibrating device as voicing source to vocal tract. The OES is the preferred speech production because it
does not require surgery (TES) or external devices (EL). But the OES has very low intelligibility due to
irregular vibration of voicing source and altered vocal tract shape. The signal processing algorithms can
be used to improve the intelligibility of OES.

In the literature some researchers have used signal processing algorithms for OES enhancement. The
source-filter speech production model [1] has been used to decompose the OES into its source and filter
components, and the source subsequently was replaced with the Liljencrants Fant (LF) glottal flow model
for enhancing OES quality [2]. The modification to [2] has been obtained by processing fundamental
frequency for intelligible OES [3]. The filter formants modification has provided significant improvement
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in intelligibility [4,5,6,7,8,9]. Statistical methods have shown significant results in improvement using
OES to normal speech transformation [10].

The Kalman filter is an extensively used speech enhancement method for normal speech such as full-
band Kalman filtering [11,12,13,14], and subband Kalman filtering [15,16,17,18,19,20,21,22,15,14,23,
24,25,26]. Speech production model inheritance and non-stationary processing are the advantages of
Kalman filtering over other speech enhancement methods[16,19]. The Kalman filter has also been used
for OES speech enhancement, demonstrating significant improvement. The first use of Kalman filter-
ing for OES has provided significant enhancement[27]. The modification to [27] was introduced using
poles stabilization, as shown in Figure. 1, and its results showed significantly improved speech quality
[28,29,30,31]. To the best of our knowledge, up to now, nobody else has used Kalman filtering for OES
enhancement.

The speech research community has been using the modulation domain for the last decade for speech
enhancement , recognition, separation etc [32,33,34,35]. The modulation domain states that speech fre-
quency subbands can be modeled as low frequency modulators and high frequency carriers [32,35]:

xk(n) = mk(n)ck(n) (1)

where xk(n), mk(n) and ck(n) are frequency subband k signal, its modulator and carrier respectively. It
has been shown that modulators of speech signals are more important for intelligibility than carriers i.e.
when modulators are replaced by some constant, speech is not intelligible [32,36,35].

This paper investigates the Kalman filter for OES enhancement in the modulation domain. The mod-
ulators mk(n) and carriers ck(n) are estimated using coherent demodulation [32,35] and Kalman filter
is applied to the modulators without altering the carriers. The system was tested with the Harmonic to
Noise (HNR) objectively and Mean Opinion Score (MOS) subjectively, for the Spanish male speaker
OES vowels \a\, \e\,\i\, \o\, and \u\. The proposed system was compared with a reference system,
Kalman Filtered Enhanced Speech (KF-ES), presented in [28,29], shown in Figure 1.

The structure of this paper is as follows. In Section 2 we describe the proposed method. The system
components demodulation and frequency sub-band modulator Kalman Filter are described in Section 3
and 4 respectively. The optimal parameter estimation for optimal Kalman filtering is provided in Section
4.1. Section 5 explains the poles modification followed by a summary of the results and conclusion in
Section 6 and 7.

Kalman Filtering

Pole Stabilization

x(n)

ŝ(n)

ˆ̂s(n)

Fig. 1. Kalman Filtered Enhanced Speech (KF-ES) system ([28,29]).



2. Method

This section outlines the proposed method, Coherently Modulated Kalman Filtered Enhanced Speech
(C-MKF-ES), also shown in Figure. 2. The first step in processing OES is to decompose the broadband
OES into narrowband frequency subbands. The perfectly reconstructed filterbank of uniformally-spaced
K bandpass filter, each having an impulse response of hk(n) using short-time Fourier transform (STFT),
is used to decompose the speech signals into K narrowband subbands [36,35]. Mathematically:

xk(n) = x(n) ∗ hk(n) (2)

where ∗ is convolution operator.

Fig. 2. Coherently Modulated Kalman Filtered Enhanced Speech (C-MKF-ES) system.

Each frequency subband is demodulated into carrier ck and modulator mk using coherent demodula-
tion (Section. 3), mathematically:

xk(n) = mk(n)ck(n) (3)

The Kalman filter is applied to modulators mk(n) for modification (Section. 4). The modified fre-
quency sub-band modulators m̂k(n) are then modulated with carriers according to following equation:

x̂k(n) = m̂k(n)ck(n) (4)



where x̂k(n) is the modified k frequency sub-band.
The synthesis filter bank transforms frequency subbands into a full-band signal:

x̂(n) =
K∑

k=1

x̂k(n) (5)

The final enhanced version ˆ̂x(n) is obtained by passing x̂(n) through a poles modification process
(Section. 5).

3. Demodulation

The demodulation is a process of estimating the frequency subband modulators mk(n) and carriers
ck(n). The demodulation can be coherent or non-coherent. The non-coherent demodulation estimates
mk(n) and ck(n) separately [32], while coherent demodulation (paper used coherent demodulation) of
mk(n) depends on the estimation of ck(n) [36,35].

3.1. Coherent Demodulation

The coherent demodulation estimates the modulator in terms of an explicitly estimated carrier signal
[32,35], mathematically:

mk(n) = xk(n)c∗k(n) (6)

where c∗k(n) is the carrier and given as:

c∗k(n) = e−jφ(n) (7)

where phase φk(n) is:

φk(n) =
n∑

p=o

ωk(p) (8)

where ωk(p) is the instantaneous frequency of subband k and is defined according to the Center-of-
Gravity (CoG) approach as the average frequency of instantaneous spectrum of xk(n) [32,36,35]:

ωk(n) =

∑L−1
i=0 α(i)|Xk(i, n)|2
∑L−1

i=0 |Xk(i, n)|2
(9)

where L is Discrete Fourier Transform (DFT) length, α(i) is the weighting function:

α(i) =

{
2πi/L 0 ≤ i ≤ L/2
2πi/L− 2π L/2 < i < L

(10)



and Xk(i, n) is the subband Fourier transform, and given as:

Xk(i, n) =
∑

p

w(p)xk(n+ p)e−j2π(i/L)p, i = 0 : L− 1 (11)

where w(p) is a window function, i.e. Hamming or Hanning window.
There are other type of demodulation available in literature i.e. convex optimized demodulation [37]

and probabilistic amplitude demodulation [38], but they are computationally very time consuming.

4. Coherent Subband Modulator Kalman Filter

The modulators ms
k(n) of speech signal can be modeled as AR process, and represented by the fol-

lowing linear equation:

ms
k(n) =

p∑

j=1

amk,jm
s
k(n− j) + ωsk(n) (12)

where amk,j and p are the prediction coefficients and order. ωsk is a white Gaussian process with zero mean
and variance σ2ωsk . The noise modulator mv

k(n) is also an AR process:

mv
k(n) =

q∑

j=1

bmk,jm
v
k(n− j) + ζvk (n) (13)

where bmk,j are prediction coefficients, q prediction order, and ζvk white Gaussian processing with zero
mean and variance σ2ζvk The state-space domain representation for Kalman filtering usage is:

m̄s
k(n) = Fkm̄

s
k(n) +Gkω̄

s
k(n) (14)

mk(n) = HT
k m̄

s
k(n) (15)

where

Fk =







0 1 ... 0
0 0 ... 0
...

... ...
...

0 0 ... 1
−amk,p −amk,p−1 ... −amk,1




0

0




0 1 ... 0
0 0 ... 0
...

... ...
...

0 0 ... 1
−bmk,q −bmk,q−1 ... −bmk,1







Gk =
[
[1,0,...,0]p×1 0

0 [1,0,...,0]q×1

]



HT
k = [ [1,0,...,0]Tp×1 [1,0,...,0]Tq×1 ]

ω̄sk(n) =
[
ωsk(n)

ζvk (n)

]

m̄s
k(n) = [ms

k(n− p+ 1), . . . ,ms
k(n),mv

k(n− q + 1), . . . ,mv
k(n)]T

The covariance matrix for ω̄sk(n) is described by following mathematical relation:

Qk = E[ω̄sk(n)ω̄sk(n)T ] =

[
σ2
ωs
k

0

0 σ2
ζv
k

]
(16)

The Kalman filter estimates the ms
k(n), providing observation vector {mk(1),mk(2), .....mk(n)} [39]:

m̂s
k(n) = Fkm̂

s
k(n− 1) +Kk(n)[mk(n)−HT

k Fkm̂
s
k(n− 1)] (17)

where Kk(n) is the Kalman gain and given as:

Kk(n) =
Pk(n|n− 1)Hk

[HT
k Pk(n|n− 1)Hk]

(18)

Pk(n|n− 1) = FkPk(n− 1)F T +GkQkG
T
k (19)

Pk(n) = [I −Kk(n)hT ]Pk(n|n− 1) (20)

where PK(n) and Pk(n|n− 1) are the filtering and prediction-error covariance matrices respectively. At
time instant n, the speech sample is described by,

m̂s
k(n) = HT

k m̂
s
k(n) (21)

4.1. Parameter Estimation

The optimum results of Kalman filtering can be obtained when the estimation of AR coefficients
amk,j , b

m
k,j and variances σ2ωsk , σ

2
ζvk

are optimal. Poor estimation of these parameters resulted in distorted
speech. This section provides the optimal estimation of amk,j , σ

2
ωsk

utilizing Weight Linear Prediction
(WLP) and bmk,j , σ

2
ζvk

using Linear Prediction (LP).



4.1.1. Weighted Linear Prediction (WLP)
The conventional Linear Prediction (LP) estimates the AR coefficients by minimizing the error be-

tween estimated and measured signals [1].

m̂k(n) =

p∑

j=1

amk,jmk(n− j) (22)

The error signal εk(n) is:

εk(n) =
N∑

n=1

[mk(n)−
p∑

j=1

amk,jmk(n− j)] (23)

The AR coefficients amk,j are estimated using minimum square error criterion,

ε2k(n) =
N∑

n=1

(mk(n)−
p∑

j=1

amk,jmk(n− j))2 (24)

The minimum of the above equation can be obtained by setting its derivative with respect to amk,j zero:

∂ε2k
∂amk,i

=
N∑

n=1

(2(mk(n)−
p∑

j=1

amk,jmk(n− j))mk(n− i)) = 0 (25)

= −2
N∑

n=1

mk(n)mk(n− i) + 2
N∑

n=1

p∑

j=1

amk,jmk(n− j)mk(n− i)

= 0, ∀i = 1, 2, . . . , p (26)

N∑

n=1

mk(n)mk(n− i) =

p∑

j=1

amk,j

N∑

n=1

mk(n− j)mk(n− i) (27)

The covariance function is defined as:

rmmk (i, j) =

N∑

n=1

mk(n− i)mk(n− j)

which results in:

rmmk (i, 0) =

p∑

j=1

rmmk (i, j)amk,j (28)



In the matrix form:



rmmk (1,0)

rmmk (2,0)

...
rmmk (p,0)


 =




rmmk (1,1) rmmk (1,2) ... rmmk (1,p)

rmmk (2,1) rmmk (2,2) ... rmmk (2,p)

...
...

... ...
...

rmmk (p,1) rmmk (p,2) ... rmmk (p,p)







amk,1
amk,2

...
amk,p


 (29)

in compact form

~r = R~a (30)

and solution for ~a given by,

~a = R−1~r (31)

The predicted coefficients are degraded due to conventional LP sensitivity to background noise [40,41].
The weighting function is introduced to overcome conventional LP problems [40,41]. The weighting
function is calculated using the Short-Time Energy (STE) Ψk(n)[40]:

Ψk(n) =
M∑

j=1

m2
k(n− j) (32)

where M is number of samples, used to estimate energy. The prediction error by introducing the weight-
ing function is:

ε2k(n) =
N∑

n=1

[mk(n)−
p∑

j=1

amk,jmk(n− j)]2Ψk(n) (33)

Solving for amk,j , we have:




amk,1
amk,2

...
amk,p


 =




rmmk (1,1) rmmk (1,2) ... rmmk (1,p)

rmmk (2,1) rmmk (2,2) ... rmmk (2,p)

...
...

... ...
...

rmmk (p,1) rmmk (p,2) ... rmmk (p,p)




−1 


rmmk (1,0)

rmmk (2,0)

...
rmmk (p,0)


 (34)

where rmmk is the covariance of the modulators and given as [23]:

rmmk (i, j) =

N∑

n=1

Ψk(n)mk(n− i)mk(n− j) (35)

The variance σ2ωsk is calculated according to following relation:

σ2ωsk
= rmmk (0, 0)−

p∑

i=1

amk,ir
mm
k (0, i) (36)



4.1.2. Noise parameters
The noise signal modulators are assumed to be known, and the AR coefficients and variance can be

estimated using the covariance function rmvmvk (i, j):

rmvmvk (i, j) =
N∑

n=1

mv
k(n− i)mv

k(n− j) (37)

Solving for bmk,i, we have:

q∑

i=1

bmk,ir
mvmv
k (j, i) = rmvmvk (j, 0), ∀j = 1, 2, . . . , q (38)




bmk,1
bmk,2

...
bmk,q


 =




rmvmvk (1,1) rmvmvk (1,2) ... rmvmvk (1,q)

rmvmvk (2,1) rmvmvk (2,2) ... rmvmvk (2,q)

...
...

...
...

rmvmvk (q,1) rmvmvk (q,2) ... rmvmvk (q,q)




−1 


rmvmvk (1,0)

rmvmvk (2,0)

...
rmvmvk (q,0)


 (39)

The variance σ2ζvk according to [23]:

σ2ζvk
= rmvmvk (0, 0)−

q∑

i=1

bmk,ir
mvmv
k (0, i) (40)

5. Poles modification

The enhanced speech signal x̂(n) is further enhanced by modifying the AR coefficients (poles) using
the Line Spectral Frequency (LSF) pairs [42], following these steps:

– estimating AR coefficients for short segment of speech
– converting AR coefficients to LSF pairs
– modifying LSF according to the following equation:

ˆlsf i = lsfi−1 + di−1 +
d2i−1

d2i−1 + d2i
((lsfi+1 − lsfi−1)− (di + di−1)) (41)

where lsfi and ˆlsfi are the original and modified LSF of a frame respectively.

di = α(lsfi+1 − lsfi), i = 2, . . . , p− 1 (42)

where p is the prediction order, and α the controlling constant for modification.
– converting back the modified LSF pairs to AR coefficients



6. Results and Discussion

The system uses the Spanish OES vowels {a,e,i,o,u}. Six male OES subjects of the speech rehabil-

itation center (there are no female subjects in the center) participated in vowel recording. Each vowel

was uttered four times. The recording sampling frequency was 44100 Hz and down sampled to 16 KHz

for computation efficiency. The system tuning parameters are given in Table 1. The system was evalu-

ated objectively using Harmonic to Noise Ratio (HNR) [43,44], and subjectively through Mean Opinion

Score (MOS). The VoiceSauce matlab based speech analysis toolbox was used for HNR calculation [45].

Table 1
The System parameters setting for simulations

Fullband Kalman Filter (KF-ES) Coherent demodulated Kalman Filter (C-MKF-ES)
frame size: 40 ms , overlap: 15 ms frame size: 40 ms , overlap: 15 ms

(p,q): (16,16), (16,8), (12,8), (8,4), (4,2) (p,q): (16,16), (16,8), (12,8), (8,4), (4,2)
Poles stabilization [27,28,29] Poles Modification [42]

Modulus threshold τM = 0.001 prediction order p: 16
phase threshold τθ = π/8 α = 0.3, 0.4, 0.5

modulus stabilization constant κM = 0.5 Filterbank setting
phase stabilization constant κθ = 0.001 Uniformly-spaced 16 channel filterbank [32,36]

6.1. Harmonic to Noise Ratio (HNR)

The HNR is an objective measurement parameter for assessing the noise level in human voice signals

[43]. The average mean HNR for different vowels in table 2 has shown improvement of around 6 dB for

the proposed system. The noise and speech prediction order plays an important role in enhancement. The

poles modification sharpen the vocal tracts formants, which provide enhancement as can be seen in table

2.



Table 2
Average Mean Harmonic to Noise ratio improvement for Spanish OES vowels with/without different α values

Method↓ (p, q)→ (4,2) (8,4) (12,8) (16,8) (16,16) α↓
KF-ES (dB) 1.23 2.33 2.58 2.88 3.01 -

3.90 3.87 4.01 4.88 5.11 -
5.47 5.31 6.10 7.09 7.59 0.3

C-MKF-ES (dB) 4.51 4.73 5.44 6.12 7.19 0.4
4.97 4.60 5.12 6.10 6.89 0.5
\a\

KF-ES (dB) 1.41 2.13 2.61 2.91 3.41 -

2.19 2.87 3.15 3.51 4.12 -
4.13 4.18 4.90 5.01 5.88 0.3

C-MKF-ES (dB) 3.93 4.81 4.97 5.32 5.86 0.4
4.03 4.33 4.87 5.23 5.79 0.5
\e\

KF-ES (dB) 1.89 2.11 2.94 3.13 3.60 -

1.87 2.13 2.79 3.07 3.89 -
2.41 2.97 3.89 4.08 5.17 0.3

C-MKF-ES (dB) 3.13 3.71 4.17 5.12 6.32 0.4
2.67 3.41 4.13 5.42 6.21 0.5
\i\

KF-ES (dB) 2.13 2.53 3.03 3.44 2.67 -

2.01 2.87 3.14 3.65 4.23 -
2.87 3.56 5.32 5.39 5.98 0.3

C-MKF-ES (dB) 2.96 3.76 4.01 4.78 5.18 0.4
2.79 3.18 4.32 5.31 6.13 0.5
\o\

KF-ES (dB) 0.98 1.23 2.01 2.67 2.88 -

1.75 2.33 3.21 3.79 4.63 -
2.86 2.90 3.45 3.96 4.70 0.3

C-MKF-ES (dB) 1.89 2.45 3.87 4.88 6.01 0.4
2.03 3.10 3.21 2.77 3.02 0.5
\u\

6.2. Mean Opinion Score (MOS)

The system was tested using MOS (ranging from 1, bad, to 5, excellent) with ten listeners. None of

them had listened to OES before. Most of the listeners were unable to understand non-processed samples,

and gave minimum MOS scores as can be seen in table 3. The average MOS for each vowel is shown

in table 3. It can be observed that the proposed system outperforms the KF-ES system significantly. The

poles modification has provided much better enhancement as the average MOS is above 3.



Table 3
Average Mean Opinion Score (MOS) for Spanish OES vowels with/without different α values

Method↓ (p, q)→ (4,2) (8,4) (12,8) (16,8) (16,16) α↓
Original 1.04 1.04 1.04 1.04 1.04 -
KF-ES 1.89 2.23 2.50 2.63 2.21 -

2.03 2.31 2.33 2.56 2.67 -
2.76 2.89 3.01 3.03 2.99 0.3

C-MKF-ES 2.65 2.97 3.11 3.14 3.21 0.4
2.43 3.13 3.16 3.23 3.25 0.5

\a\
Original 1.07 1.07 1.07 1.07 1.07 -
KF-ES 1.76 1.83 2.01 2.32 2.21 -

2.01 2.05 2.09 2.08 2.11 -
2.21 2.24 2.28 2.31 2.35 0.3

C-MKF-ES 2.26 2.29 2.45 2.49 2.67 0.4
2.34 2.87 2.95 3.01 3.13 0.5

\e\
Original 1.0 1.0 1.0 1.0 1.0 -
KF-ES 1.61 1.82 1.86 1.92 1.97 -

1.79 1.94 2.03 2.05 2.07 -
2.01 2.23 2.56 2.04 2.34 0.3

C-MKF-ES 2.09 2.34 2.37 2.45 2.87 0.4
2.11 2.23 2.42 2.80 3.03 0.5

\i\
Original 1.10 1.10 1.10 1.10 1.10 -
KF-ES 1.81 1.84 1.82 1.86 1.91 -

2.12 2.23 2.26 2.24 2.56 -
2.09 2.35 2.67 2.69 2.71 0.3

C-MKF-ES 2.07 2.45 2.49 2.51 2.89 0.4
2.11 2.38 2.87 3.03 3.23 0.5

\o\
Original 1.0 1.0 1.0 1.0 1.0 -
KF-ES 1.67 1.89 1.92 1.96 2.01 -

1.89 1.81 1.73 1.82 1.98 -
1.65 1.93 2.03 2.32 2.84 0.3

C-MKF-ES 1.84 2.03 2.08 2.34 2.56 0.4
1.54 2.34 2.42 2.59 3.32 0.5

\u\

The spectrogram of OES vowel /a/ and the enhanced signal are shown in Fig. 3 and 4 respectively. The

enhanced version OES vowel /a/ spectrogram shows formants very clearly compared with the spectro-

gram of the non-processed OES vowel /a/.



Fig. 3. OES vowel /a/ Spectrogram and waveform

Fig. 4. Enhanced OES vowel /a/ Spectrogram and waveform



7. Conclusion

In this paper a new method is presented for enhancing Oesophageal Speech (OES). Kalman Filtering
was applied to modulators of frequency subbands instead of the full band signal. The frequency subband
modulators are estimated coherently. The Autoregressive (AR) and noise parameters for speech and noise
modulators are estimated using Weighted Linear Predication (WLP) instead of Linear Prediction (LP).
The AR parameters are further modified using a poles modification method. The Harmonic to Noise
Ratio (HNR) and Mean Opinion Score (MOS) are used to assess the system’s capability with Spanish
male OES vowels \a\, \e\, \i\, \o\ and \u\. The results showed that the proposed system, the coherent
modulator Kalman Filter (C-MKF-ES), outperforms the fullband Kalman filter (KE-ES) subjectively as
well objectively. The system has only been evaluated with male subjects due to non-availability of female
OES subjects.
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