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Abstract

Sensing and telecommunications technologies are generating vast vol-

umes of data that motivate the use of data-driven approaches, with a

particular interest in Machine Learning (ML), to analysing this data.

Like other research areas, Intelligent Transportation Systems (ITSs)

announce the production of tons of hardly manageable traffic data that

can be used by different applications such as traveller information sys-

tems or Traffic Forecasting (TF) schemes. Recently, TF is gaining rele-

vance due to its ability to deal with traffic congestion through forecast-

ing future states of different traffic measures (e.g., travel time). From

a ML perspective, TF is approached through learning and approximat-

ing a mapping function from historical data to make traffic predictions

when facing unseen data. TF literature reports diverse ML methods

that have led to taxonomy proposals that classify the methods based on

the mathematical assumptions from which they operate. Conversely,

only a few efforts have been dedicated to categorising TF problems

and how they are modelled to be approachable by ML methods. There-

fore, without knowing what types of TF problems there are, it is hard

to figure out the best ML methods in each TF scenario.

TF poses two main challenges to the ML paradigm. First, traffic data

can be collected in multiple formats (e.g., traffic-counting measures,

GPS tracks) and under different transportation circumstances (e.g., ur-

ban, freeway). These characteristics influence the performance of ML

methods, and choosing the most competitive method from a set of can-

didates brings human effort and time costs. Second, raw traffic data

usually needs to be preprocessed before being analysed. Therefore, de-

ciding the most suitable combination of data preprocessing techniques



and ML method is a time-consuming task that demands specialised

ML knowledge to approach it.

Automated Machine Learning (AutoML) arises as a promising ap-

proach that addresses the issues mentioned above in problem domains

wherein expert ML knowledge is not always an available or affordable

asset such as TF. Specifically, AutoML aims at automatically finding

ML pipelines (the workflow from data preprocessing to model valida-

tion) that can be competitive on input data without knowing the prob-

lem domain wherein the data comes from (general-purpose). AutoML

methods have been broadly used in other areas; however, it has been

underexplored in TF. The latter raises the question if general-purpose

AutoML guarantees competitive results while reducing the human-

time costs of ML in TF. However, current AutoML approaches suffer

from issues that can also affect its performance in TF as well as in other

ML problems. The optimisation process to find competitive pipelines

is complicated and computational costly because of the diversity of

the search space (multiple preprocessing and ML techniques) and the

high evaluation cost of the objective function. Alternative learning ap-

proaches (e.g., meta-learning) have been designed to try to overcome

these issues, but they could not properly work on diverse datasets such

as TF. This context claims for more robust and efficient AutoML meth-

ods that can contribute not only to the general-purpose domain but also

to TF.

Therefore, this thesis focuses on the development of new AutoML ap-

proaches more suited to specific problem domains that can offer also

competitive results in TF. The research conducted here is completed

through three progressive stages. First, we introduce a new taxon-

omy that categorises and provides a systematic view of different super-

vised TF problems. It consolidates traffic-related criteria and proposes

new ML modelling attributes that enable to identify well-established

trends and gaps in TF from a ML perspective. The second stage com-

prises a thorough study of AutoML in supervised learning problems.



Concretely, we evaluate the competitiveness of current AutoML ap-
proaches using a sample of supervised TF problems extracted from the
proposed taxonomy. This analysis allows us to identify key points to
improve the performance of AutoML in the general-domain as well as
in TF. Therefore, in the third stage of the research, we present a new
AutoML method for supervised problems, such as TF, with a search
strategy based on the construction of ensembles of multiple classifiers.
The novelty of this approach lies in its simplicity, competitiveness and
scalability that overcomes some on the most common issues of Au-
toML.

In summary, this research introduces a novel and improved AutoML
mechanism able to better adapt to specific problem domains using data
preprocessing techniques, ML methods and raw data. The proposed
method can lead to better or competitive results in the general-purpose
domain and TF with respect to the state-of-the-art. This is accom-
plished by taking advantage of the automated generation of ensembles
from a predefined set of ML pipelines. The use of these multiple clas-
sifier systems significantly speed up the AutoML process, and it also
opens the path towards AutoML frameworks based on ensemble strate-
gies. Therefore, this automated learning approach becomes a promis-
ing alternative to develop more straightforward AutoML methods that
are potentially more suitable to tackle datasets of different sizes.
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The beginning is the most important
part of the work.

Plato

CHAPTER

1
Introduction

ITSs are revolutionising how transport and mobility are conceived. Its primary
purpose is to provide high-quality transportation services to passengers, transport
managers, and policymakers [3]. ITS applications include public transport infor-
mation services, cooperative vehicular systems or TF schemes, among others [3, 4].
During the last years, TF has been a critical component of ITSs to tackle traffic con-
gestion, as it aims to predict near-future traffic measures based on current and his-
torical traffic information [5]. TF allows travellers to plan their movements ahead
of time and assists decision-makers to improve the management of traffic flows.

Initially, TF was focused on the prediction of traffic at single locations within
freeway or urban environments. This was approached employing traffic theory [6]
and classical statistical methods [7]; however, growing sensing and telecommu-
nications technologies of ITSs are generating big volumes of traffic data that the
former modelling approaches can hardly analyse. The latter has changed the TF
modelling paradigm towards a data-driven approach [5, 8–10], placing particular
emphasis on ML methods [11]. The main strengths of ML are its ability to predict
traffic without the need of knowing theoretical traffic mechanisms, and its capacity
to mine complex spatial-temporal relationships underlying traffic data.

As well as in other research areas that are faced with the production of huge and
complex volumes of data, upcoming ITSs announce the generation of traffic data

1



1. INTRODUCTION

at rates higher than the ones reported today. This availability of data poses multiple

challenges to ML that range from complex spatial-temporal traffic patterns embed-

ded in data, to the high demand for ML knowledge to develop suitable methods

that can effectively analyse and mine this data. However, expert ML knowledge

is an expensive and sometimes a scarce resource; which ends up limiting the ap-

plication of ML in different research areas such as TF. Therefore, the aim of this

thesis is contributing to the development of automated methods able to deal with

raw-complex data and the absence of ML knowledge. This research endeavour can

satisfy the on-going demands of TF as well as the ML demands of other data-driven

fields.

In this chapter, the motivation for this research along with the research ques-

tions that naturally arise are discussed in Section 1.1. After this, the objectives and

research methodology are presented in Sections 1.2 and 1.3, respectively. Next, the

contributions and scientific publications are summarised in Section 1.4. Finally,

the research context and the outline of this thesis are presented in Sections 1.5 and

1.6, respectively.

1.1 Motivation and Scope
TF is being influenced by the high availability of data provided by ITSs that at the

same time motivates the use of data-driven modelling approaches [9], particularly

ML as it was exposed above. Some technologies such as Automatic Vehicle Iden-

tification, Electronic Tolls, and GPS collect individual traffic data related to each

vehicle on the roads; meanwhile, others collect macroscopic traffic measures (aver-

ages of many cars) such as Vehicle Detection Systems (VDS). Based on VDS data,

the most common type of data available and used in TF literature [12], two super-

vised ML modelling approaches can be typically used. Whether the traffic measure

to be predicted is continuous (e.g., speed or flow), TF should be approached as a

supervised regression problem. When the expected value is discrete, the prediction

should be addressed as a supervised classification problem (e.g., Traffic Level of

Service - LoS). In both cases, the purpose of ML is to train a model that learns and

approximates a mapping function (based on historical traffic data), in such a way

that when the model faces new and unseen data, it can make accurate predictions.

2



1.1 Motivation and Scope

Transportation literature reports a great variety of ML methods such as Neural

Networks (NNs), Support Vector Machines (SVMs), k-Nearest Neighbours (kNN)

or Random Forest (RF), among others [5, 9]. This variety has led to different tax-

onomy proposals that categorise the methods based on the mathematical assump-

tions from which they operate with respect to traffic theory and statistical methods

[12–16]. Similarly to ML [11], the methods are categorised as parametric and non-

parametric. The former category assumes the relationship between the explana-

tory and response variables as known (e.g., logistic regression, perceptron); while

methods of the latter category model non-linear relationships without requiring the

mentioned assumption (e.g., NNs, RF).

Contrarily, a few efforts have been directed to classify the TF problems and how

they can be modelled to be approachable by the aforementioned methods. There-

fore, without knowing what types of TF problems there are, it is difficult to figure

out the strengths and weaknesses of ML methods in each particular problem. These

problems must be classified by characteristics of the transportation scenario (type

of data source, context of predictions, etc.) and the modelling specifications im-

posed by the ML paradigm. However, systematically define and organise how TF

problems can be modelled from a supervised learning perspective remains unex-

plored to date. The research presented here addresses this gap.

TF poses a twofold challenge to the supervised ML paradigm. In the first place,

traffic data allows the prediction of traffic under different transportation scenarios

that can range from making predictions at multiple freeway segments to forecast-

ing traffic at a whole road network [5]. These characteristics of the transportation

context influence the performance of ML models [9] and, therefore, selecting the

most appropriate method from a pool of candidates is a time-consuming task that

involves a high human effort. The latter can cause the success of ML happens at a

high price, especially in research areas wherein expert ML knowledge is not always

available such as the case of TF. In the second place, raw traffic data cannot usually

be directly fed into ML methods as it could have missing values, noise and diverse

formats (e.g., GPS tracks, traffic-counting measures). These data imperfections

need to be preprocessed before being correctly analysed and mined [17]. Hence,

choosing the most suitable ML method must also include the selection of prepro-

cessing approaches to format the data in shape accepted by ML algorithms and,

3



1. INTRODUCTION

thus, being able to exploit the hidden patterns of traffic data [18]. Although this

enhances the contributions of ML into TF, it also adds extra human effort and time

cost due to the search of suitable data preprocessing techniques that better fit the

TF problem at hand and the ML method selected. Consequently, defining the most

suitable ML pipeline structure (the combination of data preprocessing techniques

with a ML method) is a complex problem that makes expert ML knowledge more

necessary, while keeps demanding time, human effort, and high computational ca-

pacities.

The automation of the complete ML workflow, known as AutoML, arises as a

promising approach to reduce the human effort and time cost of ML in research

areas wherein specialised ML knowledge is not an asset that is always available

or affordable. Concretely, AutoML seeks to automatically find competitive ML

pipeline structures, which maximise or minimise a performance metric on input

data without being specialised in the problem domain (general-purpose) wherein

the data comes from [19]. AutoML approaches usually follow two strategies for the

automated construction of ML pipelines. On the one hand, there could be a purely-

based optimisation process that tests different promising combinations. They are

generated from a predefined base of preprocessing and learning algorithms to min-

imise/maximise an objective function during a time budget predefined by the user

[20, 21]. On the other hand, there is an alternative approach based on a hybrid

search where the optimisation is complemented with meta-learning [1, 22]. In this

latter case, the learning approach is in charge of systematically observing how dif-

ferent ML pipelines perform on a wide range of tasks to take advantage of this

experience to learn new tasks faster. Thus, when new data is given, meta-learning

recommends pipelines that are likely to perform well on the input dataset based on

previous experience. This selection of pipelines is later on used for a warm-start of

the optimisation process.

AutoML methods have been successfully used in other areas; however, an ex-

tensive analysis to determine the strengths and weaknesses of the search strategies

mentioned above has not been carried out in very diverse learning tasks such as

TF. To the best of our knowledge, only one paper out of this thesis has used Au-

toML concepts in TF [23]. Although this study showed promising results, it does

not consider the complete automation of ML pipelines for TF and does not employ
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current state-of-the-art AutoML approaches. In this sense, determining to what

extent general-purpose AutoML can be competitive in TF is far from being fully

answered. Specifically, in-depth efforts are needed to research whether general-

purpose AutoML can offer competitive results with respect to specific-purpose ML

methods in tasks such as TF. The research presented here addresses this challenge.

Answering whether or not AutoML works in specific areas such as TF can lead

to determine if general-purpose approaches are sufficient to play the role of ML

experts and recommend competitive pipelines. However, current AutoML meth-

ods suffer from some issues that can affect their performance in TF as well as in

other research areas. As it was exposed above, the core of general-purpose Au-

toML is based on the fine-tuning of pipelines that later can be or not integrated on

ensembles [1, 24]. This optimisation process is computationally expensive due to

the complexity of the search space (variability of data preprocessing techniques,

ML methods and hyperparameters) and the high evaluation cost of the objective

function in big datasets. In this context, meta-learning is a suitable strategy to deal

with these issues and, therefore, it can improve the performance of AutoML. Nev-

ertheless, it is not easy to characterise a wide variety of learning tasks entirely.

Therefore, the assumption of always being able to suggest competitive pipelines

for unseen learning task (e.g., TF) that are different from the ones used to train the

meta-learning approach needs more research. The latter would be not only useful

for the transportation community, but also to other fields not limited to TF.

Considering the limitations mentioned above, the automated process of gener-

ating and testing ML pipelines shows a wide margin of improvement. This offers

the opportunity to develop new and novel AutoML approaches towards more robust

and efficient strategies for the automated construction of learning pipelines, which

can be better adapted to specific problems domains. In this sense, a new automated

learning approach of ML pipelines can contribute not only to general-purpose Au-

toML but also to its performance in TF problems. The research presented here

addresses this challenge.

Summarising, multiple research questions derive from the motivations pre-

sented above:
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1. What types of problems are there in TF and how are they modelled from a

supervised learning paradigm?

2. Can general-purpose AutoML properly work in TF? What are its strengths

and weaknesses dealing with supervised learning problem such as TF?

3. Is it possible to build a new general-purpose AutoML approach that mitigates

current AutoML’s drawbacks and better adapts to specific learning tasks such

as TF?

1.2 Objectives
As it was stated above, the overall aim of this thesis is to investigate and contribute

to the development of new automated methods able to leverage raw-complex data

and supply the absence of ML knowledge in specific problem domains such as TF.

To achieve this purpose, we define the following progressive objectives:

• Objective 1: To understand, organise and systematise the existing knowl-

edge about TF problems modelled from a classical supervised learning per-

spective. This objective corresponds to the first research question.

• Objective 2: To characterise the performance of AutoML, based on optimi-

sation and meta-learning integrated with optimisation, in supervised learning

problems using TF as an application area. This objective corresponds to sec-

ond research question.

• Objective 3: To improve the performance of AutoML in supervised learn-

ing problems, including TF. This objective corresponds to the third research

question.

1.3 Research Methodology
The research field of this thesis is evolving fast due to technological advances and

the continuous generation of new knowledge in TF and ML. Therefore an iterative

research methodology that allows us to review the state-of-the-art regularly was
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Figure 1.1: Research methodology of this thesis composed of four main stages linked
between them in a cyclical way

followed. The main idea of this cyclical process is that the knowledge acquired

in its initial phases helps us to design increasingly original contributions capable

of improving the understanding and knowledge in the areas wherein this thesis is

focused. This cyclical process has multiple iterations done during the three years of

this PhD thesis. Figure 1.1 shows the different phases of this research methodology,

and they are briefly described below:

1. Review and Analysis of the state-of-the-art: this stage is focused on in-

vestigating the state-of-the-art related to the fields (TF and ML) under con-

sideration to identify gaps and challenges in current literature. To achieve

this aim, the relevant bibliography is used, reviewing both publications from

the scientific community published in journals and proceedings of world-

wide conferences. The knowledge acquired in this phase led to formulate the

research proposal in the first year of this PhD.

2. Design and Development: in this phase, different proposals to approach the

identified challenges are designed and developed. To this end, previously

acquired or updated knowledge (new literature review) is used to ensure that

the solution is always up-to-date with the current state-of-the-art.
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3. Experimentation and Evaluation: the goal of this phase is to test the pro-

posals resulting from the previous step to a process of experimentation. To

carry out this procedure, it is crucial to provide some criteria and evaluation

methods with which the results will be compared in the subsequent phase.

All these criteria and methods must be built using the knowledge acquired in

the first stage of the methodology.

4. Results Analyses and Comparison: after carrying out experimentation, re-

sults must be analysed and contrasted with those obtained in the state-of-the-

art. At this point, it is needed to check if the results obtained are enough to

address the challenges identified in the first phase. In such a case, another

methodological cycle begins to approach the following challenge identified

or to keep working with the challenge under consideration if it was not still

solved. In this stage, conclusions must be drawn from analyses of results and

knowledge obtained must be materialised in scientific dissemination, either

through journals, books, or conferences.

1.4 Contributions and Publications
The work presented in this dissertation focuses on the exploration of novel auto-

mated learning approaches for TF problems, which has produced one of the largest

and most consolidate bodies of research in ITSs.The main contributions of this

thesis and their associated scientific production are presented below:

• A new taxonomy that provides a panoramic view of the different TF super-

vised problems to provide a common framework that helps to display sim-

ilarities and differences among the problems. This taxonomy unifies and

consolidates traffic-related criteria available in the literature. Besides, it in-

troduces new criteria to categorise TF problems with respect to how they

can be modelled from a supervised learning perspective. This contribution is

approached in Chapter 3 and the scientific dissemination associated to it is:

Title: A Taxonomy of Traffic Forecasting Regression Problems From

a Supervised Learning Perspective.
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Authors: Angarita-Zapata JS, Masegosa AD, Triguero I.

Journal: IEEE Access (Impact Factor = 4.098→ Q1).

Status: Published. Vol. 7, pp. 68185-68205, 2019.

• A thorough study of general-purpose AutoML when dealing with supervised

learning problems using TF as a study case. This is accomplished by an

in-depth analysis of AutoML approaches, based on optimisation and meta-

learning with optimisation, in two families of TF problems. Thus, we iden-

tify AutoML’s strengths and drawbacks that give guidelines to improve the

performance of general-purpose AutoML in diverse learning tasks such as

TF. This contribution is approached in Chapter 4 and the scientific works

associated to it are:

1. Title: General-purpose Automated Machine Learning for Trans-

portation: A Case study of Auto-sklearn for Traffic Forecasting.

Authors: Angarita-Zapata JS, Masegosa AD, Triguero I.

Congress: 18th International Conference on Information Processing

and Management of Uncertainty in Knowledge-Based Systems, 2020,

Lisbon (Portugal).

2. Title: Evaluating Automated Machine Learning on Supervised Re-

gression Traffic Forecasting Problems.

Authors: Angarita-Zapata JS, Masegosa AD, Triguero I.

Book Chapter: Computational Intelligence in Emerging Technologies

for Engineering Applications.

Status: Published in Studies in Computational Intelligence, vol 872.

Springer Cham, 2020.

3. Title: A Preliminary Study on Automatic Algorithm Selection for

Short-Term Traffic Forecasting.
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Authors: Angarita-Zapata JS, Triguero I, Masegosa AD.

Congress: XII International Symposium on Intelligent and Distributed

Computing, 2018, Bilbao (Spain).

• A new AutoML method for supervised classification problems with a pipeline

search strategy purely based on the construction of multiple classifiers. This

novel AutoML method can lead to better or competitive results in compari-

son to the state-of-the-art, becoming a very promising alternative to develop

more straightforward AutoML methods that are potentially more parallelis-

able and suitable to tackle bigger datasets. This contribution is approached

in Chapter 5 and the scientific dissemination associated to it is:

Title: Ensembles are all you need: An AutoML method based on en-

sembles of predefined machine learning pipelines.

Authors: Angarita-Zapata JS, Masegosa AD, Triguero I.

Status: Under review - paper submitted in May 22, 2020.

1.5 Research Context
In this section, information about the funding, institutions and research stay that

have supported this research is provided.

1.5.1 Research Support and Funding

This research has been funded by the European Union Horizon 2020 Research and

Innovation Programme under Agreement 815069 and by the Marie Sklodowska-

Curie under Agreement 665959. This research has also been funded and supported

by Deusto Smart Mobility Research Group, DeustoTech-Fundación Deusto, the

Faculty of Engineering at the University of Deusto (Spain), and the Computational

Optimisation and Learning Lab at the University of Nottingham (UK).
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1.5.2 Research Stay

During the second year of the PhD, an international research stay was made as

part of the research activities. The research stay was carried out at University of

Nottingham (UoN) within the Computational Optimisation and Learning (COL)

Lab 1. The stay lasted three months, from April to July 2019, under the supervision

of Dr Isaac Triguero. He is a supervisor of this research and Associate Professor at

the School of Computer Science in UoN. The objective of the research stay was to

collaborate with international experts in the ML field to share knowledge and get

feedback from them. Therefore, it was possible to study the basics of ML deeply,

data preprocessing, and AutoML that later on ends with the production of one book

chapter and one journal paper.

1.6 Structure of the Dissertation
The structure of the remainder of this thesis dissertation is outlined below.

Chapter 2 reviews background and related work about ML and ITSs with special

emphasis in AutoML and TF modelled from a ML perspective.

Chapter 3 presents the proposed taxonomy that is built based on traffic and ML

modelling specifications to categorise supervised TF problems. This chapter

is therefore aligned with Specific Objective 1.

Chapter 4 provides a thorough analysis of the benefits and drawbacks of general-

purpose AutoML when dealing with supervised regression and classification

TF problems. The work presented in this Chapter is therefore directly related

to Specific Objective 2.

Chapters 5 introduces AutoEn, a simple and efficient AutoML method that ap-

proaches some of the drawbacks of AutoML methods identified in Chapter 4.

This Chapter is aligned with Specific Objective 3.

1www.nottingham.ac.uk/research/groups/col/index.aspx
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Chapters 6 revisits the main goal and specific objectives posed in this PhD thesis,
summarises the main contributions of this research, and outlines possible
future research.
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The only true wisdom is in knowing
you know nothing.

Socrates

CHAPTER

2
Background and Related

Work

Increasing computational capacities and telecommunications technologies are
producing countless quantities of raw data in diverse research fields. This data em-
beds valuable information that can be used to solve different data-driven problems.
Therefore, raw data needs to be mined and analysed to comprehend the patterns
that lie behind it. Such mining process could be done manually by experts of the
areas wherein the data is generated; nevertheless, the convergence of computing
and communications are creating significant volumes of data that are hardly man-
ageable by hand. In this context, the development of automated approaches of data
analysis is fully required to be able to extract efficiently all the valuable knowledge
embedded in this data.

This thesis delves into automated methods to disentangle that valuable knowl-
edge from the data, bridging gaps between ML, TF in the context of ITSs, and
AutoML approaches. In this chapter, the essential background and related work on
these areas is provided. First, ITSs and its main application areas are introduced
in Section 2.1. Afterwards, Section 2.2 presents the TF problem that is a key com-
ponent of ITSs and the central application area of this research. Then, Section 2.3
places concepts of ML with special emphasis on supervised learning and provides
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an overview of the ML workflow from data preprocessing to model selection. Fol-

lowing, Section 2.4 gives an introduction and presents related work of AutoML.

Finally, Section 2.5 summarises background and related work of how TF can be

addressed using ML.

2.1 Intelligent Transportation Systems
Computers, localisation and positioning systems, and sensing technologies are play-

ing an increasingly important role as instruments used for different purposes under

different conditions to improve our transportation systems. In this context, ITSs

are the set of applications that make use of telecommunications and computation to

provide transport services that can be used by passenger, freight transport, transport

managers, and policymakers [3].

ITSs consist of systems responsible for collecting data concerning the state of

traffic, systems in charge of processing and integrating the data and, finally, sys-

tems that are responsible for mining the data and providing transport information

to the users mentioned above. Therefore, the data collected in real-time by ITSs

may be used to determine the state of the transportation network, to plan a trip, to

manage the traffic dynamically, or even to report data from a logistics operator to

the customer, among others [25].

Recently, ITSs are addressing significant changes due to huge volumes of traffic

data stored by from a wide variety of sources. This data availability can potentially

lead to a new generation of ITSs going from conventional technologies and sys-

tems to data-driven ITSs. Such evolution of ITSs opens the path towards applica-

tions such as advanced traveller information systems, advanced public transporta-

tion systems, advanced urban transportation systems, among others [26, 27]. Those

applications mentioned above are different in their nature and purposes. However,

one element shared by all of them is the prediction of future states of different traf-

fic measures (e.g., speed, travel time), which represent valuable information for the

stakeholders of each application.

The prediction of traffic is highly influenced by data that in the majority of the

cases has imperfections, heterogeneity and comes in multiple formats due to the

diversity of data sources. These data characteristics demand different actions such
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as data cleaning, data imputation and dimension reduction to improve the quality of

the data and guarantee the minimum format to analyse and mine it using data-driven

methods [25]. In this sense, ML appears as a promising data-driven approach to

deal with these challenges through different learning strategies that can address

both the preprocessing of data and the data mining processes.

Within this research, we focus on the area of traffic prediction approached from

a ML paradigm. These two research areas are presented with more details in the

following sections.

2.2 Traffic Forecasting
Within ITSs research, TF has been a relevant topic during the last three decades

due to its active role in traveller and traffic management systems as a strategy to

deal with traffic congestion. The main objective of TF is the prediction of near-

future traffic measures based on current or past traffic data [5], such as can be seen

in Figure 2.1. TF allows travellers to plan their trips ahead of time and assists

transportation managers to enhance the management of traffic flows.

Figure 2.1: Traffic Forecasting’s main idea

In early TF research, most studies were focused on predicting traffic at a single

location using simulation models [14], theory-based traffic models [6] and classi-

cal statistical methods [7]. However, the emergence of sensing and telecommuni-
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cations technologies integrated into transportation infrastructure started to generate

vast volumes of traffic data that is hardly manageable by classic traffic models. The

latter caused a switch in the modelling paradigm towards a data-driven approach

[12]. Since then, a variety of methods have been proposed placing special emphasis

on NNs [28, 29], RF [30, 31], kNN [32], ARIMA models [33], Fuzzy logic [10, 34]

and Bio-inspired algorithms [8, 35], among others [5].

In recent years ML methods have attracted the interest of the transportation

community, and they are present in a vast proportion of literature [36]. This data-

driven approach consists of training a model that learns and approximates a map-

ping function using historical traffic, which then is used to make predictions when

the model deals with new and unseen data (more details of this process can be found

in Section 2.3). The main strengths of ML with respect to simulation approaches

and traffic models are its ability to predict traffic without the need for expert traf-

fic knowledge [16]. Besides, concerning statistical methods, ML is a more robust

paradigm able to analyse complex and nonlinear relationships underlying traffic

data [5].

As computational capacities and massive data processing techniques have in-

creased, more complex scenarios with different road settings can be tackled with

ML (e.g., network-wide predictions) leaving behind traditional approaches to ad-

dress traffic prediction [9]. In this context, ML can contribute actively to the design

and development of current Advanced Traffic Management Systems and Advanced

Traveller Information Systems [37], such as it was mentioned in Section 2.1, to

predict different traffic conditions in freeway and urban environments.

2.3 Machine Learning
ML is the field focused on algorithms able of modifying and adapting their be-

haviour employing an iterative learning process without the need of being explic-

itly programmed. More formally, according to Mitchell [38], a ML algorithm learns

from experience E related to a task T and its performance is evaluated by a metric

P. Its performance at T improves according to P after experience E.

Applications like e-mail spam and malware filtering, automatic speech recogni-

tion, predictive maintenance in the industry are built upon ML. Within these appli-
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cation areas, the most used ML approach is supervised learning (see Section 2.3.2),

and conventional methods considered in the state-of-the-art are J48, Naı̈ve Bayes,

NNs, SVM, kNN, among others [39, 40].

As a common factor, all these applications do not include only ML algorithms

but also data preprocessing techniques, as it has proven key to gleaning quality

data before applying ML methods [18]. The connection between data preprocess-

ing techniques and a ML algorithm generates a pipeline whose main structure is

presented in Figure 2.2.

Figure 2.2: Standard structure of a machine learning pipeline

According to [41], a ML pipeline P can be defined as a combination of al-

gorithms A that transforms input data X into target values Y . Let A be defined

as

A = {Apreprocessing ∪ Afeature ∪ Aalgorithm} (2.1)

wherein Apreprocessing is a subset of preprocessing techniques, Afeature a subset of

feature engineering methods, and Aalgorithm a ML algorithm with configuration of

hyperparameters λi ∈ Λ.

Having introduced the formal definition of a ML pipeline, the following sec-

tions are devoted to presenting relevant concepts associated with the elements that

constitute a pipeline.

2.3.1 Data Preprocessing

Input data must be provided in the format that suits ML algorithms. Unfortunately,

real-world databases are highly influenced by the presence of noise, missing values,

inconsistent data, among others [42]. Therefore low-quality input data can consid-

erably affect the performance of ML methods [18]. In this section, we describe a

general overview of data preprocessing techniques that improve the quality of data
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before fed it into ML algorithms. For more details, the interested reader can consult

[17].

Data Preparation

Data preparation is usually a mandatory step in supervised learning problems [42].

It converts prior raw and, sometimes useless, data into new data that fits the input

of ML methods. If data is not prepared correctly, ML methods will not operate,

will report errors during their runtimes, or will generate results that do not make

sense within the context wherein the data comes. We present below representative

approaches within the data preparation phase [17].

• Data Cleaning: This approach includes operations related to inconsistent

data corrections and reduction of redundant data. The primary purpose is the

detection of discrepancies and dirty data, which means identifying fragments

of the original data that do not make sense in the context under study [43, 44].

• Data Transformation and Data Integration: In the data transformation

process, data is converted to enable that the supervised learning process can

be more efficient. Examples of possible paths to follow are feature genera-

tion, feature aggregation or data normalisation, among others [42]. For the

vase of data integration, this preprocessing approach involves the merging of

data that comes from multiple data sources. This process requires caution to

avoid redundancies and inconsistencies in the resulting dataset [45, 46].

• Data Normalisation: Input data can have multiple variables with different

measurement scales. Such diversity of measurement units can affect the data

analysis. Therefore all the variables should be expressed in the same mea-

surement units and should use a standard scale or range. This process gives

all variables equal or similar weight and is particularly useful in statistical

learning methods [42, 47, 48].

• Missing Data Imputation and Noise Identification: Here the objective is

to fill in the variables of the input data that contain missing values following

a particular strategy (e.g., imputation of the mean value of the most recurrent
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values). In most of the cases, adding an estimation of the missing data is quite

better than leaving blank. Complementary this approach includes smoothing

processes whose purpose is to detect random errors or variances in the input

data [49, 50].

Data Reduction

Data reduction comprises the set of techniques that obtain a reduced representation

of the original input data [42]. Unlike data preparation, data reduction typically

maintains the essential structure and integrity of the original data. Still, the amount

of data is reduced to enhance efficiency in the learning process of ML algorithms.

We present below representative approaches within the data preparation phase.

• Feature Selection and Instance Selection: On the one hand, Feature Selec-

tion is focused on the reduction of the dataset size by removing irrelevant or

redundant features. The objective is to find a minimum set of attributes that

facilitates the understanding of the model’s outcome and increases the speed

of the learning process. On the other hand, Instance Selection is based on

choosing a subset of the total available data to achieve the same performance

of the ML model as if the complete dataset were considered. This approach

seeks to select the best and most representative instances from the original

data for not having to use the full set of data [51, 52].

• Discretisation: This process transforms quantitative data into qualitative

data, that is, numerical attributes into discrete or nominal attributes with a

finite number of intervals [42]. Once the discretisation is carried out, the

data can be treated as nominal by ML method [53, 54].

2.3.2 Supervised and Unsupervised Learning

Once data preprocessing is completed, the next step in the Knowledge Discovery

in Databases cycle [42] is selecting a ML algorithm in charge of extracting knowl-

edge and valid patterns previously unseen in input data. ML algorithms can be

subdivided into multiple areas [55], among which the best known are supervised
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learning and unsupervised learning. These two approaches are presented with more
details below.

Unsupervised learning is one of the significant areas in ML. Unlike supervised
learning that typically uses labelled data, that is, during the training process of a
model, the target values are clearly defined in Y ; unsupervised learning looks for
patterns in data with no pre-existing labels [56]. The central approach of unsu-
pervised learning is usually focused on clustering grouping of data points. Given
a set of data points, clustering is in charge of organising X data points into spe-
cific groups such as is shown in Figure2.3. Data points that are in the same group
should have similar properties, while data points in different groups should have
highly different properties and/or features. It is important to note that these po-
tential groups are not previously defined in the input data and is the purpose of
unsupervised learning algorithms to discover them. Representative applications of
unsupervised learning are marketing segmentation and anomaly detection, among
others [57].

Figure 2.3: Unsupervised learning: clustering

As it was stated above, supervised learning is the other fundamental area of
ML [58]. It basically consists in algorithms that learn a function (f : X → Y ) by
training with a finite number of input-output pairs, beingX the input domain and Y
the output codomain. This learning stage can be seen as E in Mitchell’s definition
[38], and the specific task T may vary, but usually involves predicting an output
given a new and unseen input [55].

Supervised learning problems can be processed by learning from a training
dataset composed of instances that take the form (x, y). In this format, x ∈ X is a
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vector of values in the space of input variables (features) and y ∈ Y is a value in
the target variable such as is shown in Figure 2.4. Inputs will usually belong to a
subset of Rn and outputs take values in a specific one-dimensional set, either finite
or continuous. Once trained, the obtained model can be used to predict the target
variable on unseen instances [55].

Figure 2.4: Format of a machine learning dataset

Supervised learning problems can be usually divided into two categories: clas-
sification and regression [59, 60]. In both cases, the basis is an input dataset, X ,
and their difference is the type of target variable, Y , to be predicted. On the classi-
fication case, Y is divided into discrete categories, while in regression, the purpose
is predicting continuous values.

Standard classification problems 1 can be either binary or multi-class problems
[61, 62]. In the former case, an instance can only be associated with one of two
values: positive or negative that is equivalent to 0 or 1, such as can be seen in
Figure 2.5. Examples of this binary classification are email messages that can be
categorised into spam or non-spam. Regarding multi-class problems, they involve
cases wherein there are more than two classes under consideration. That is, any
given instance will belong to one of the multiple possible categories. For example,
a flower image can be categorised within a wide range of plant species.

Diversely, a supervised regression problem [63, 64] consists in finding a func-
tion which is able to predict, for a given an example, a real value among a con-
tinuous range. The latter is usually an interval in the set of real numbers R. For

1The reader can consult further details of non-standard classification problems in [55]
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Figure 2.5: Supervised binary classification.

example, the price of a house may be calculated using multiple characteristics such

as the number of bedrooms as can be observed in Figure 2.6.

Figure 2.6: Supervised regression.

In this research, we focus on the prediction of traffic modelled as a supervised

learning problem using regression and classification approaches. Although TF can

be addressed with different modelling paradigms (e.g., time-series, unsupervised

learning), currently, supervised learning is the data-driven approach most used in

transportation literature [9, 36].
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2.3.3 Ensemble learning

The ML pipeline presented in Figure 2.2 has a crucial component wherein a ML

algorithm is chosen for making predictions or classification. However, it is well-

known that there is no single ML method that achieves high performance on every

possible learning task [65]. The performance of a single-learner can changes dras-

tically across very diverse data-driven problems. Therefore, one state-of-the-art

approach to overcome such a challenge is to combine multiple ML methods and

either aggregate or combine its outcomes. This approach is known as ensemble

learning, and its purpose is to enhance the performance of single methods by com-

bining various classifiers that can be more adaptable to diverse learning tasks and

outperform the performance of individual algorithms [66].

Ensemble learning paradigm follows the natural human behaviour that tends to

seek several opinions before making any relevant decision. The primary motiva-

tion for the combination of classifiers in ensembles is to improve their generalisa-

tion ability: each classifier is known to make errors, but since they are different,

misclassified examples are not necessarily the same [67]. Ensemble methods are

well-established in ML there are two main taxonomies to differentiate the most

common approaches.

First, there is a family of ensemble methods based on the collection of clas-

sifiers that are minors variants of the same classifier [68]. Although the group of

classifiers comes from the same learner, keeping diversity between them is a crucial

factor in making accurate ensemble methods. To accomplish such a criterion of va-

riety, there are different approaches focused on building diverse classifiers trained

with varying sub-sets of training, which belong to the complete training set at hand.

AdaBoost [69] and Bagging [70] are common strategies to carry out the ensemble

construction process while guaranteeing the diversity among classifiers.

Secondly, there exists an alternative ensemble approach that combines diverse

classifiers that use different training paradigms (e.g., linear or non-linear algo-

rithms). This ensemble strategy is known as ”multiple classifier systems” [71],

and its purpose is aggregating the predictions of the classifiers when unknown in-

stances are presented. Multiple-classifiers are used to achieve the best possible

classification performance; however, this type of ensembles will work only when
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it is possible to build individual classifiers which are more than 50% accurate [71]

and independent of each other [72]. If all the classifiers in the ensemble were iden-

tical, the multi-classifiers system would not obtain high performance as is expected.

.

2.3.4 Model Selection and Assessment

In its most basic definition, the Model Selection Problem (MSP) is one of the fun-

damental tasks of scientific inquiry. Determining the mechanism that explains data

observations is usually related to a mathematical model that can predict those ob-

servations [73]. Therefore, MSP is the task of selecting a statistical model from a

set of candidate models given input data. In ML the MSP is the process of choosing

one final ML model from a set of candidate models. This task implies estimating

the performance of the different models to choose the best one to address the prob-

lem at hand.

The best approach to model selection requires enough data that sometimes

could not be the case due to the complexity of the problem under study. If we

are in a data-rich situation, the best way to proceed is to split the input dataset into

three parts randomly [74]: a training set, a validation set, and a test set such as is

introduced in Figure 2.7. The training set is used to fit the set of available mod-

els; the validation set is then used to estimate prediction error for model selection;

and finally, the test set is used to assess the generalisation error of the final chosen

model. Then the best model is selected based on the validation error, and the test

set should be kept in a “vault” to be brought out only at the end of the process when

the best model has been selected [75]. A typical data split maybe 50 % training,

and 25% validation and 25% test.

Figure 2.7: Training, validation and test data partitions for model selection
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However, the approach mentioned above could be impractical on ML super-
vised problems wherein there is not sufficient data. In these cases, the most com-
mon approach is using re-sampling strategies to carry out the model selection 1.
Cross-validation is the re-sampling strategy most commonly used in situations
where there is no enough data [76]. In this approach presented in Figure 2.8, the
training set is split into k smaller sub-sets and the next steps are followed for each
of the k-folds:

• a ML method is trained using k-1 of the folds as training data.

• the resulting trained model is validated on the remaining part of the data (i.e.
it is used as a test set to compute a predefined performance metric such as root
mean squared error in regression problems or accuracy on binary problems).
Usually, this split of the data is used for tuning hyperparameters.

Figure 2.8: Cross validation to approach the model selection problem

The final performance metric is the average of the metric reported by every k-

fold. This approach can be computationally expensive, but it does not waste too
much data, which is a significant advantage in some supervised learning problems
[74].

1Other model selection approaches can be consulted with more details in [11]
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Having defined the main strategies for model selection, now, how do we mea-

sure the actual performance of the chosen model and corroborate that we made

the right selection? After selecting the final model, estimating its prediction error

(generalisation error) on new data enable us to answer this question; this is known

as model assessment [11]. The generalisation performance of a ML method relates

to its prediction capability on independent test data. Considering this performance

is important because it guides the final choice of a particular learning method and

gives a measure of the quality of the chosen model [77].

The generalisation error for a ML algorithm can be divided into Bias error and

Variance error. The former is related to assumptions made by a ML algorithm to

make the target function easier to learn. Linear algorithms usually have a high bias

making them fast to learn and to understand but generally less flexible. Therefore,

they have lower predictive performance in complex problems that fail to meet the

simplifying assumptions of the algorithms bias [78]. On the other hand, the Vari-

ance error is related to how the final estimations can change if different training data

was used. ML methods are influenced by the specific characteristics of the training

data. This means that the training data affects the parameters used to characterise

the mapping function of the learning algorithm [79].

Figure 2.9: Bias and Variance of a machine learning method

According to Figure 2.9 if a ML model is too simple and has very few parame-

ters (model complexity), then it has high bias and low variance. On the other hand,
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if the model has a large number of parameters, then it will have high variance and

small bias. In this context, the purpose of model selection and assessment is to find

a balance between bias and variance with particular emphasis in achieving low bias

and low variance. Thus, the ML algorithm under consideration will make good

enough performance.

Finally, although the approaches presented above about model assessment and

selection in ML brings guidelines to chose the most promising method over a set

of candidates, this process is usually tedious and computationally expensive. This

is generally done by ML experts who make use of their knowledge or by non-

expert users who tackle the problem using a trial and error approach that causes the

success of ML comes at a high-cost [80].

2.4 Automated Machine Learning
As it was described in Section 2.3.4, dealing with the MSP is a task that involves

human effort, time and computational resources. In this context, AutoML is an

emerging area that can address the MSP. AutoML aims at automatically finding the

best combination of preprocessing techniques, ML algorithm and its hyperparame-

ters, according to a particular performance measure on a given dataset without be-

ing specialised in the problem domain wherein this data comes from [19]. It allows

us to reduce human bias and to improve computational costs by making the con-

struction of ML applications more efficiently. More formally, the process consists

of identifying the most promising combination of preprocessing techniques, ML

method and hyperparameters, which optimises a given performance metric when

the pipeline is trained on training data D(i)
train and evaluated on test data D(i)

test.

Current literature [19, 41, 80] reports a variety of AutoML methods. They

differ depending on which parts of a ML pipeline are automated; for instance,

data preprocessing, algorithm selection and hyperparameters, or even the entire

ML pipeline. In this section, we review key concepts and related work in AutoML,

ranging from the isolated automation of data preprocessing to the automatisation of

a complete pipeline. First, we introduce automated data preprocessing and feature

engineering in Section 2.4.1. Then, we present methods for finding the best combi-
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nation of algorithm and hyperparameters setting in Section 2.4.2. Finally, AutoML

methods for creating a complete ML pipelines are introduced in Section 2.4.3.

2.4.1 Automated Data Preprocessing

Data preprocessing and feature engineering are key elements when building ML

pipelines. They are known for being tasks related to the specific area of knowledge

in which ML is applied. However, as the AutoML goal is to be domain agnostic,

data preprocessing and feature engineering are not incorporated fully in current

AutoML methods [41].

By elimination noise and removing redundant features, a ML pipeline can be

trained faster with a lower generalisation error. Besides, the interpretability of the

trained models can increase as the number of features considered is smaller. Basic

methods for data preprocessing and feature selection (e.g., imputation of missing

values, scaling of variables, univariate selection, variance threshold) are already

integrated into modern AutoML frameworks [1, 21, 81]. They are usually applied

in a sequential way to the input dataset before searching for the pair algorithm and

hyperparameters setting. In this sense, the inclusion of preprocessing methods does

not consider which of them are actually improving the quality of the data and what

others are only adding computational costs without any significant improvement on

the performance of ML models.

On the other hand, with regard to features generation, the conventional ap-

proach in AutoML is following an iterative process in which based on an initial

dataset, a set of candidate features is generated and ranked. For instance, high

ranking features are evaluated and potentially added to the dataset using a deep

feature synthesis method [82]. In contrast, an alternative strategy is using meta-

learning to predict in advance the influence of a set of promising features over the

performance of ML models [83, 84]. Nevertheless, approaches to enhance auto-

mated feature generation with domain-knowledge are still not considered within

AutoML [85, 86].

In summary, data preprocessing and feature engineering techniques included

in AutoML are domain-agnostic [41]. Therefore, this approach cannot identify

whether preprocessing contributes or not to a specific domain wherein AutoML
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is applied. Incorporating domain knowledge to the preprocessing methods could

increase the quality of the data drastically [87–90], and enhance the performance

of AutoML.

2.4.2 Automated Algorithm Selection

Most of the current advances in AutoML are focused on finding the best combi-

nation of algorithm and its hyperparameters setting. This problem is commonly

solved using only a optimisation approach, and some of the most representative

solutions are described below (to read further about state-of-the-art methods in this

AutoML area, please consult [19, 41]).

The first AutoML method for automatic algorithm selection was proposed in

2011 Hutter et al. [91] and Bergstra et al. [92]. They developed a sequential

model-based optimisation method to automatically find the most suitable ML algo-

rithm with its best hyperparameters setting. This approach initialises the search of

the aforementioned pair generating multiple candidate configurations from a pre-

defined search space. They are subsequently tested, and in each iteration (using

Bayesian optimisation) the candidate configuration with the best performance is

selected. The procedure is stopped when a fixed time budget is exceeded, or all

generated configurations are tested.

One year later, Snoek et al. [93] introduced a method named SPEARMINT

that uses surrogate models to propose promising algorithms and hyperparameters

settings. A significant limitation of SPEARMINT is that it does not support the

inclusion of categorical hyperparameters, which in consequence reduces its scope

of application. Then in 2014, Claese et al. [94] developed OPTUNITY that works

in a similar way to the method proposed by Hutter et al. [91] and Bergstra et

al. [92]. Concretely, OPTUNITY limits the number of total objective function

evaluations, using a heuristic approach, to figure out the best pair of algorithm and

hyperparameters. Furthermore, categorical hyperparameters are transformed into

an integer to be treated as continuous values without having to discard them.

More recently, Falkner et al. [93] proposed the BOHB method to solve the

Combined Algorithm Selection and Hyperparameter optimisation (CASH) prob-

lem. Specifically, it uses a combination of bayesian optimisation and hyperband
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to find the best pair of ML algorithm and hyperparameters with less computational

costs. For each candidate pair, BOHB transfers the current budget and the evalu-

ated configuration to the objective function; thus, it is possible to keep traceability

of what combinations, from the ones that have been considered, are suitable candi-

dates in terms of performance and computational cost. Finally, in this same year,

Gustafson [94] developed a method named BTB. For the hyperparameters tuning,

a grid with all of the possible combinations of hyperparameters is created. Each

point (called hyper-partition) in this grid is treated as a bandit with unknown re-

ward. To propose a new candidate configuration, a hyper partition is selected via

multi-armed bandit learning to be evaluated with an algorithm. This last step is

repeated for a fixed number of iterations until finding the best combination of algo-

rithm and hyperparameters.

Until now, the sections introduced above have presented representative strate-

gies to automatise the selection of data preprocessing techniques or ML algorithms.

Diversity, the next section introduces the main AutoML methods able to automatise

at the same time, all the components of the ML workflow.

2.4.3 Automated Machine Learning Pipelines

2.4.3.1 Approaches for the automatic construction of ML workflows

In the literature, we can usually find two main categories of AutoML methods to

automatise the construction of ML pipelines. Those categories are based only on

optimisation or on meta-learning integrated with optimisation. The first one uses

optimisation only to generate, tune, and assess pipelines, as represented in Figure

2.10. In this case, when new data is fed into this type of methods, they start to build

multiple possible combinations of pipelines from a predefined search space of pre-

processing, ML methods and hyperparameters. Then, after a given time or a fixed

number of iterations, they return the best pipeline found or construct an ensemble

from a set of competitive pipelines identified during the optimisation. From this

perspective, the ML pipeline building problem consists of finding pipeline struc-

tures that minimise a cross-validation loss function (Equation 2.2). Representative

AutoML methods for this category can be Auto-WEKA [20], TPOT [21], H2O

[24], among others [95, 96].
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Figure 2.10: General approach of AutoML methods based on a pure optimisation
search strategy

Equation 2.2 shows the loss function to find the best PA,λ wherein Aλ is a

combination of preprocessing techniques, feature engineering methods, and a ML

algorithm with a configuration of hyperparameters λi ∈ Λ, which is trained on

training data and evaluated on test data-

PA∗,λ∗ = argmin
A(i)∈A,λ(i)∈Λ

1

K

k∑
i=1

γ
(
PA(i),λ(i) , Dtrain, Dtest

)
(2.2)

As shown in Equation 2.2, this search process can be considered as a black-

box optimisation problem that it is not easily solvable as the search space can be

large and complex. This equation is usually non-smooth and derivative-free, and

the convergence speed is a critical problem for building ML pipelines [41]. Some

methods to solve this equation are grid search [24], genetic programming [21], and

Bayesian optimisation [91].

Regarding AutoML methods that combines optimisation with meta-learning

[1, 97, 98], their working process is shown in Figure 2.11. For this type of Au-

toML methods, in an offline phase, optimisation is used to find ML pipelines with

high performance on a repository of datasets. Simultaneously, a group of meta-

features are extracted to characterise each dataset that describes its representative

characteristics such as data skewness, the entropy of targets, number of instances,

variance of the data, among others [98]. Afterwards, the meta-features and the
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Figure 2.11: General approach of AutoML methods with a search strategy of pipelines
based on meta-learning and optimisation

optimised pipelines are stored in a meta-knowledge base wherein each instance

contains the set of meta-features describing every dataset and its corresponding

optimised pipeline. Then, in the online stage when new input data comes in, the

meta-learning component recommends pipelines that are likely to perform well on

the input dataset. This selection of pipelines is then used for a warm-start of the

optimisation process, which can end suggesting a single pipeline of an ensemble

that contains competitive pipelines.

In a nutshell, there are consolidated AutoML methods that automatise the com-

plete ML workflow. As a common factor, the core of their pipeline search strategies

is focused on generating and fine-tuning individual pipelines that later can be or not

integrated on ensembles. However, this online optimisation of pipelines is compu-

tationally expensive because the complexity of the search space (diverse data pre-

processing and ML methods) and the high evaluation cost of the objective function

in big datasets. Although AutoML approaches that combine meta-learning with

optimisation could potentially reduce the impact of these issues, more research is

needed to corroborate these benefits. The reason for the latter is because it is dif-

ficult to characterise a wide variety of learning tasks such as TF; therefore, the

assumption of always being able to suggest competitive pipelines for a new and

unseen learning task needs more in-depth research.
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2.4.3.2 Pioneer methods based on optimisation and meta-learning with opti-
misation

In this section, we present an overview of Auto-WEKA and Auto-sklearn. They are
the pioneer AutoML methods of the pipeline search strategies introduced above.
Besides, these two methods receive special attention in this research, as will be
seen later in Chapters 4 and 5.

1. Auto-WEKA: Auto-WEKA is the pioneer of AutoML methods purely based
on optimisation. Originally published in 2013, it approaches the algorithm
selection problem through a Bayesian optimisation method. It considers the
space of WEKA’s ML algorithms X =

{
X(1), ..., X(k)

}
and their hyperpa-

rameter spaces A =
{
A(1), ..., A(k)

}
to identify the combination of algorithm

X(i) ∈ X and hyperparametersA(i) ∈ A, which minimises a cross-validation
loss (Equation 1), where γ

(
X

(i)
A , D

(i)
train, D

(i)
test

)
denotes the loss achieved by

algorithm X(i) with hyperparameters A(i) when trained on training data-set
D

(i)
train and evaluated on test data-set D(i)

test.

X∗A∗ = argmin
X(i)∈X,A(i)∈A

1

K

k∑
i=1

γ
(
X

(i)
A , D

(i)
train, D

(i)
test

)
(2.3)

Thornton et al. [20] call this the combined algorithm selection and hy-
perparameter optimisation (CASH) problem: determining argminθ∈Θf (Θ)

wherein each configuration θ ∈ Θ contains the choice of algorithmX(i) ∈ X
and its hyperparameters setting A(i) ∈ A. With this problem definition, the
Bayesian optimisation fits a probabilistic model to capture the relationship
between different hyperparameter configurations and their performance. It
then uses this model to select the most promising hyperparameter setting,
assesses it, updates the model with the result of configuration chose, and it-
erates until a predefined time budget is reached. As can be seen, this is a
brief description of the method. The interested reader is referred into [20]
for further details.

2. Auto-sklearn: Auto-sklearn is the pioneer of AutoML methods that use hy-
brid search strategies, this means, methods that complement the optimisa-
tion with meta-learning to boost the performance of the former. Concretely,
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Auto-sklearn employs meta-learning, Bayesian optimisation and ensemble
selection to find promising ML pipelines composed of data preprocessing
methods and one ML classifier. Here we provide a brief description of the
method. The interested reader is referred to [1] for further details. Figure
2.12 summarises its overall workflow.

Figure 2.12: Auto-sklearn’s workflow composed of meta-learning, bayesian optimi-
sation and ensemble learning [1]

In an offline phase, for a repository of 121 datasets, Bayesian optimisation is
used to determine an optimised ML pipeline with high performance on ev-
ery dataset. These pipelines are generated from a search space of 15 classi-
fiers, 14 feature preprocessing methods, and 4 data preprocessing techniques.
Then, for each dataset, a set of 38 meta-features is extracted to characterise
every set of data. Those meta-features include information-theoretic and sta-
tistical information such as statistics about the number of data points, fea-
tures, the number of classes, data skewness, the entropy of the targets, among
others. Later on, instead of storing the 121 datasets, their meta-features and
the ML pipelines are saved in a meta-knowledge base wherein each instance
contains the set of meta-features describing every dataset and the optimised
pipeline that works well on it.

In the online phase, that is, when a new dataset Dnew is given, Auto-sklearn
computes its meta-features, ranks all the datasets stored in the meta-knowledge
base (stored in the form of meta-features and not the data itself) by their L1

distance with respect to Dnew, and selects the stored ML pipelines for the k
nearest datasets (by default k = 25). The assumption is that these selected
pipelines are likely to perform quite well in Dnew as they performed well
on datasets with similar meta-features (pipelines closer to the first position
of the ranking would expect higher performance on Dnew). This selection
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of K most promising pipelines is used then to seed the Bayesian optimi-

sation component as a warm-start approach, which boosts the performance

of the optimisation. In addition to the recommendations done by the meta-

learning component, the Bayesian optimisation process (under a time budget

constraint) generates and tests new pipeline structures from the same search

space mentioned above. In the final step of Auto-sklearn’s workflow, the best

pipelines identified during the Bayesian search process are used to construct

an ensemble. This automated ensemble construction avoids to commit itself

to a single hyperparameter setting, and it is more robust than only using the

best pipeline found with the optimisation component.

2.5 Machine Learning in Traffic Forecasting
Having introduced the background of ML and AutoML, in this last section, we

review the advances of these two learning paradigms in TF, specifically, from a

supervised learning approach.

2.5.1 Supervised Learning Modelling approaches

From a supervised learning perspective, TF is approached by building a model

using historical traffic data to make predictions on new and unseen data. Depending

on the type of input and output (predicted) data, different ML modelling approaches

can be used, such as is presented below.

When the objective is to predict a continuous traffic variable (e.g., speed or

flow), the possible modelling approaches can be supervised regression or clustering-

pattern recognition. In the first case, the focus is on using ML algorithms to learn

a functional form based on the input data, without prior models or data distribu-

tion assumptions [36]. Diversely, when the modelling choice is clustering-pattern

recognition, the focus consists of finding the relationships of different locations by

characterising similar traffic measure values from one road to another. Then the

traffic locations are grouped into clusters that divide the road network into cor-

related groups. Once the clusters have been identified, the next step is to use a
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supervised regression approach to predict the traffic conditions, cluster by cluster,

based on historical traffic data belonging to each group.

When the objective is forecasting a discrete traffic measure, the modelling

approach should be supervised classification that also learns a mapping function

based on historical data. For instance, ML methods can forecast the LoS of a spe-

cific road location. The latter is a categorical variable that measures the quality of

the traffic through letters from A to E in a gradual way, category A being moder-

ate traffic and category E extended delays [99]. It is essential to clarify that the

forecasting of discrete variables could also be addressed as a supervised regression

problem on some occasions, predicting either speed or density (continuous values),

and then discretising these predictions to obtain the categorical outputs.

2.5.2 Machine Learning methods

Currently, there is a broad set of ML algorithms that have been used to approach

the prediction of traffic from a supervised learning perspective. In this section, we

provide an overview of ML methods used to make traffic predictions.

In [13], Vlahogianni et al. presented and characterised ML methods applied to

TF in terms of the hypotheses made about the statistical distribution followed by the

data, the quantity and quality of the data needed for making predictions, and the ac-

curacy of the methods. Similarly to the ML field [74], the authors categorised two

types of methods: parametric and non-parametric ones. The parametric category

assumes the relationship between the explanatory and response variables as known.

Representative ML methods within this category are logistic regression, linear dis-

criminant analysis and perceptron, among others [74]. Contrary, non-parametric

methods can model non-linear relationships without requiring the mentioned as-

sumptions. Commonly non-parametric algorithms are NNs, SVMs, kNN and RF,

among others [74].

More recently, Ergamun and Levinson [36] updated the classification of meth-

ods introduced previously by [13]. The authors proposed a new taxonomy wherein

parametric and non-parametric ML methods were compared against statistical tech-

niques. The authors stated that ML methods had attracted more attention in recent

years outperforming statistical methods such as historical average and exponential
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smoothing. Despite this, the authors stressed that both approaches differ on pur-

poses and model development process and, therefore, their use depends on the par-

ticular TF problem at hand. Statistical methods concern inference and estimation

providing a model that offers insights on the data, considering both data distribu-

tions and model restrictions; while ML methods are focused on providing efficient

and accurate predictions without prior models or data distribution specifications.

Considering the main categories of methods presented above, we made a lit-

erature review between 2000 and 2019 to extract representative papers in the area

of TF wherein ML methods have been used. As a result, we identified six main

families of ML methods; each family groups methods with common features at the

moment of approaching TF problems. The families are Decision tree-based, Deep

NNs, Instance-based, Linear regression, NNs, and Probabilistic.

Figure 2.13 maps how different types of ML methods have been used to ap-

proach TF over the last decades. As can be seen, NNs were the dominant ML

methods to approach the prediction of traffic between 2000 and 2010. From then

to now, Instance-based methods such as k-Nearest Neighbours and Support Vector

Machines have been introduced to the transportation literature. Within this time,

these methods were used to solve not too complex TF problems wherein the pur-

pose was to make predictions at particular locations on a freeway or urban environ-

ments.

More recently, with the appearance of sensing technologies able to measure

traffic in a more realistic way (e.g., GPS), traditional ML methods have presented

difficulties dealing with these data. In this context, deep NNs have been introduced

to the transportation literature to approach more complex transportation scenarios

and to enable making predictions at the network level. As can be observed in Figure

2.13, this change has been the trend in the transportation literature during the last

five years.

The remaining families of ML methods (decision tree-based, linear regression,

probabilistic) have been broadly applied to handle more straightforward problems

wherein it is not needed to make traffic predictions at the network level. In such

transportation contexts, deep NNs could also be applied; however, the implementa-

tion of classical ML methods guarantees small computational costs, while obtain-

ing fair accuracy in predictions.
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Figure 2.13: ML methods most commonly used to approach TF during the last two
decades

Summarising, the wide variety of ML methods has led to different taxonomy

proposals that classify the methods based on the mathematical assumptions from

which they operate [12–16]. Contrarily, a few efforts have been directed to cate-

gorise the TF problems and how they can be modelled to be approached by those

methods. Therefore, without knowing what the types of TF problems are, it is diffi-

cult to characterise the performance of ML methods in each particular problem. TF

problems should be classified by characteristics of the transportation scenario (e.g.,

traffic data source, the context of predictions) and the modelling specifications im-

posed by the supervised learning paradigm. However, systematically categorise

and identify the types of TF problems remains unexplored to date.
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2.5.3 Model Selection Problem in Traffic Forecasting
Despite the great variety of ML methods, dealing with the MSP in TF is not a trivial
task because there are no clear guidelines to decide what methods are better to use
depending on the TF problem at hand. The general approach to tackle the MSP in
TF consists of testing a set of algorithms with multiple hyperparameter combina-
tions and select the best one. Besides, if the method is going to be used in a real
scenario, it requires to be complemented with data preprocessing techniques. The
latter increases the complexity of the problem because apart of deciding the bet
combination of method-hyperparameters, it is needed to select the most suitable
data preprocessing technique from a set of multiple options. Thus, the transporta-
tion user faces various questions at the moment of building a ML pipeline able to
deal with the TF problem at hand:

• What is the best ML method for my TF problem at hand?

• What is the best set of hyperparameters that boosts the performance of my
ML method?

• What is the most suitable data preprocessing technique for my traffic data?

• Do I need to include feature engineering techniques to make more accurate
traffic predictions?

• What are the best hyperparameters for my data preprocessing and/or feature
engineering techniques?

In research areas wherein expert ML knowledge is not always an affordable
asset (e.g., TF), building a ML pipeline involves human effort and high computa-
tional capacities because there is no single pipeline that achieves high performance
on every learning problem [80, 100]. This trial and error approach generates that
the success of ML happens at an elevated cost [80].

In this context and as it was discussed in Section 2.4, AutoML appears as a
promising opportunity to approach the issues mentioned above. However, although
AutoML methods have approached the MSP with high performance in other re-
search areas [41], to the best of our knowledge, only one study [23] out of this
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research has used AutoML in TF. In this work [23], Vlahogianni proposed a meta-
modelling technique that, based on surrogate modelling and a genetic algorithm
with an island model, optimises both the algorithm selection and the hyperparam-
eter setting. The AutoML task is performed from an algorithms base of three ML
methods (NN, SVM and Radial Base Function) that forecast average speed in a
time horizon of 5 minutes using a time series regression approach. Although Vla-
hogianni [23] shows promising results, it does not consider the complete automa-
tion of ML pipelines for TF and a lot of research is still needed to take advantage
of AutoML in TF. There are open issues such as:

• What is the performance of AutoML in supervised classification TF prob-
lems?

• What are the benefits of AutoML in TF when using a broader base of ML
algorithms?

• What does it work better for TF: AutoML purely based on optimisation or
AutoML based on meta-learning and optimisation?

• How does AutoML behave dealing with either balanced or imbalanced traffic
data?
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Science may be described as the art
of systematic oversimplification.

Karl Popper

CHAPTER

3
A Taxonomy of Supervised

Traffic Forecasting Problems

3.1 Introduction
With the advent of data and growing computational resources, the prediction of
traffic using ML has become a dominant approach. From a ML paradigm, TF
can be tackled through supervised [8, 101] or unsupervised [102–104] modelling
perspectives. Within them, the supervised learning approach is, by far, the most
widely used modelling paradigm in TF. Transportation literature reports a huge set
of supervised ML methods (e.g. RF, SVMs, ensembles) [5, 9]. This variety of
automated learning approaches has led to different taxonomy proposals that cat-
egorise ML algorithms based on the mathematical assumptions from which they
operate (either parametric or non-parametric) [12–16]. However, The categorisa-
tion of TF problems and how they can be modelled to be approached by ML is an
underexplored area. In this context, without a clear classification of TF problems, it
is almost impossible to formulate guidelines that determine what the most suitable
ML methods to deal with every TF problem are.

Supervised TF problems must be classified considering two main perspectives
at the same time: first, the transportation scenario that imposes particularities to the
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problems that may alter the performance of ML methods; and second, modelling

specifications imposed by the supervised learning paradigm. Nevertheless, system-

atically organise, characterise and define the types of TF problems from those two

perspectives is a gap in the current literature. Instead, we do find research articles,

mainly survey and review papers [5, 9, 12–14, 16, 36], which introduce a set of

criteria that allows for the categorisation of these problems based on the type of

data source (e.g. loop detectors or GPS sensors), the context of predictions (e.g.

freeway or urban environments) and the scale of predictions (e.g. single point, road

segment, or network level). Although these studies represent an advance in knowl-

edge, their categorisation attempts have the following drawbacks: 1) there is not a

unified set of criteria: they vary from one paper to another; 2) the criteria shared by

some of the previously mentioned papers do not have a standard definition; 3) most

of the criteria proposed are related to traffic characteristics, and they do not take

aspects related to how the problems are modelled from a supervised perspective

(e.g. modelling attributes to categorise how raw traffic measures can be shaped to

generate a ML dataset).

With these ideas in mind, in this chapter, we propose a taxonomy to categorise

TF problems in terms of both ML modelling and traffic specifications. The pro-

posed taxonomy does not aim to highlight all details associated with the problems

to maintain its comprehensibility and its size. It is instead designed according to

core characteristics that may alter the complexity and the modelling of TF prob-

lems. Thus, the taxonomy provides a panoramic view of the different TF super-

vised problems to provide a common framework that helps to display similarities

and differences among the problems and that allows us to identify well-established

approaches, gaps and current trends of ML in TF. Besides, the taxonomy unifies

and consolidates traffic-related criteria available in the literature to characterise TF

problems. It also introduces new criteria to categorise TF problems concerning

how they can be modelled from a supervised learning perspective.

This chapter is organised as follows. Section 3.2 introduces the proposed tax-

onomy, which is built based on traffic and ML modelling specifications. Next,

Section 3.3 categorises relevant TF literature, dated from 2000 to 2019, using the

proposed taxonomy to check its robustness and its ability to discriminate TF prob-

lems. Afterwards, Section 3.4 presents a hierarchical clustering analysis of the
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categorisation mentioned above to extract families of TF problems. Finally, Sec-

tion 3.5 recaps the content and main conclusions of this chapter.

3.2 Proposed Taxonomy
This section presents the proposed taxonomy to categorise TF supervised problems.

It is built according to traffic and modelling specifications as can be seen in Figure

3.1. These two classes of specifications have a hierarchical inner structure in which,

from top to bottom, there are attributes of at most three levels. The attributes of the

first and second level correspond to general characteristics that determine the types

of features that the problems may include. At the same time, the bullet points are

the final attributes that assign the particular features of every TF problem.

The set of traffic specifications contains three blocks of attributes that classify

the transportation context of the problems: data source, scope, and problem defi-

nition. The second set of specifications categorises how to model the TF problems

from a ML supervised perspective: the input and output modelling, the steps of

predictions into the future, and the preprocessing approaches of the input data.

It is essential to clarify that the taxonomy does not aim to describe all the de-

tails associated with the problems to keep a moderate level of granularity. The

remainder of this section is devoted to presenting and explaining the attributes of

the taxonomy.

3.2.1 Traffic Specifications

Previous surveys have proposed traffic attributes to describe the transportation sce-

narios in which TF methods can be applied [5, 13, 14]. Those attributes are the

data source used, the scope of predictions that includes context, spatial coverage

and target attributes and, finally, the problem definition attributes. The latter incor-

porate input data used, the time horizon of predictions, the time step of the data and

traffic measures to be predicted.

In this section, we present the aforementioned traffic-related attributes and their

respective sub-attributes, including some crucial references that offer more detailed

information about them. It is important to clarify that although these transportation
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Figure 3.1: A taxonomy of traffic forecasting problems

attributes have been defined before in other studies, to the best of our knowledge,

this is the first time that their definitions are unified and consolidated in a single

taxonomy, and their influence over the preparation of the ML datasets has been

approached.

3.2.1.1 Data Source

This attribute is related to sensing technologies and the traffic data that can be

obtained by them. Recent progress in ITS has enabled the extraction of traffic data

using different sources that can be classified in several ways [105]. Nevertheless,

as we are proposing a generic taxonomy able to categorise the diversity of data

sources used in TF, the categorisation presented here is divided into three groups:

point detectors, interval detectors, and moving sensors. They differ in their spatial

coverage capacity at the moment of sensing traffic. The three groups of data sources

are described as follows.

Point

This type of data source is placed at specific locations on the roads to detect the

presence of nearby vehicles. Point detectors output basic traffic measures as flow

(number of passing vehicles per hour), occupancy (percentage of the time that the
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detector is occupied), and density (number of vehicles per unit length of the road).

The most conventional sensors within this category are loop detectors, microwave

radars, laser radar sensor, active and passive infrared, among others (for more de-

tails see [2, 16, 105]).

Data obtained by a point sensor can be described as an ordered sequence of

measurements mp in a given position p (Equation 3.1), wherein mp,t is the value of

the traffic measurement at time t and position p. In this case, the traffic measures

and their predictions are only valid for describing the traffic conditions where the

sensor is located.

mp = {mp,t} t = 1, 2, ..., T (3.1)

The advantage of point sensors is they are reliable data sources, capturing all ve-

hicles passing near them and collecting macroscopic traffic measures, which means

averages of many cars. Their drawback is they cannot sense the paths of vehicles

and, therefore, it is hard to find traffic relationships between different road seg-

ments. This issue can be overcome using spatial correlation analysis to find con-

nections between the road segments with installed sensors, and then determining

what specific sensors will be included in the dataset preparation phase [28, 106].

Interval

Interval detectors are capable of calculating traffic measures between two fixed

points on the road. Unlike point detectors, they directly sense travel time. The

most common technologies in this category are automatic toll collection systems,

video cameras, and license plate recognition systems, among others (see [16, 105]).

Even though data coming from interval detectors can be represented using

Equation 3.1, their spatial coverage is not the same as point sensors. In this case,

data is valid for describing traffic measures between two points of a road segment,

which means a broader spatial coverage beyond a single location.

In contrast to point sensors, interval detectors are not able to detect all the vehi-

cles on the road positions wherein they are located [16]. Hence, having a sample of

sensed cars that represents the actual traffic conditions on the roads is a challenge
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[107]. Therefore, forecasting traffic with this type of data source requires large

volumes of data.

Moving

The appearance of GPS in smartphones and vehicles has given rise to a new type

of data source that gathers more detailed traffic information. Moving sensors pro-

vide individual traffic data related to vehicles’ trajectories on the roads. This data

allows for the identification of path patterns of cars in large areas with lower infras-

tructure costs, which means that it is more feasible to predict traffic at the network

level [108, 109]. Nevertheless, aggregate traffic measures (e.g., flow or occupancy)

can only be approximated to a certain point depending on the number of available

moving sensors [2, 16]. This last condition affects data preprocessing because ex-

trapolating the GPS samples to obtain estimations of aggregated traffic measures is

needed [110], which may lead to a biased representation of traffic on roads.

GPS devices send location, direction and speed information every few seconds.

This data can be represented as an ordered sequence of measurements such as

shown in Equation 3.2. Every sample pt can be defined as spatio-temporal data

pt = (xt, yt) wherein the spatial component contains GPS coordinates, latitude

(xt) and longitude (yt), and the temporal part includes the time stamp (t).

p = {p1 → p2 → ...→ pt → ...} t = 1, 2, ..., T (3.2)

The sequence in Equation 3.2 sometimes contains non-exact records that impact

the quality of the data [16, 111]. To overcome this issue and prepare ML datasets,

the technique most commonly used is map-matching. The latter is a procedure that

pins the drifting positions of data to the correct road links on which vehicles are

travelling [112–114].

3.2.1.2 Scope

This attribute consists of the context wherein traffic predictions are made and their

spatial extent. We identify three sub-levels within the scope attribute. The first sub-

level corresponds to the transportation environment, wherein traffic predictions can
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take place. Based on [13], the contexts can be urban or freeway. The second sub-

level determines the spatial coverage of forecasts, which is divided into a point,

segment, and network [14]. Finally, the third sub-level is related to the number of

locations simultaneously considered to make predictions, which can be a single-

target (one point, segment, or network) or multiple locations [9].

Context

Regarding the context of prediction, every area of a traffic network has character-

istics that determine the behaviour of traffic on it. We identify two main types of

traffic contexts based on [9, 12, 13, 16]: Urban and Freeway. Most of the super-

vised ML models in the transportation literature are built using traffic data collected

within freeway contexts wherein traffic is generally uninterrupted [115–118]. The

main reason behind this trend is the availability of fixed position sensors already

installed on freeways around the world; the latter makes the acquisition of data

easier [16].

Until recently, research in urban contexts was not so common because of fixed

sensor coverage issues [9, 13]. However, the advent of GPS has allowed more re-

search in urban settings that have not yet been covered with fixed position detectors

[2]. Regarding the development of predictive models, traffic in urban locations is

more complex, and the modelling process has to take aspects such as the influence

of traffic lights and intersections into account. This requires more elaborate ML

models that consider that variability and provide reliable traffic predictions [9, 12].

Spatial Coverage

This attribute represents the spatial coverage of predictions provided by ML meth-

ods (Figure 3.2). As is defined in [14], the spatial covers are point, segment, and

network. Until the most recent and comprehensive literature reviews [5, 12], most

forecasting efforts were focused on point and segment predictions [28, 117–124].

However, as more moving sensor data becomes available and ML methods able to

deal with temporal and spatial data appear, an increase of traffic forecasting at the

network level is reported in the transportation literature [9, 29, 125, 126].
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Figure 3.2: Spatial coverage of predictions provided by ML methods

Target

The target attribute represents the number of locations for which predictions are

carried out. Based on [9], the TF problem at hand can require traffic predictions

to be made for more than one point or segment, or even for a whole network. In

the case of a single target, the TF problem is approached as a simple regression or

classification problem in which a unique ML model is trained and tested to predict

traffic at the target location.

On the other hand, when the forecasting problem requires predictions to be

made simultaneously for multiple locations, it can be handled as a multi-target

problem [127]. In this case, there are two possible strategies to solve this problem,

such as the ones shown in Figure 3.3. The first strategy is to define a local approach

[127] that transforms the multiple locations into independent problems, and each

of them is then solved using a simple regression or classification approach. This

means developing one ML model for every site in which predictions are performed.

The second strategy is to use a global approach [127] that adapts a single ML model

to handle multiple datasets coming from the locations under study directly. This

latter approach is usually more challenging because it aims not only to predict

traffic at the various locations but also to model the dependencies among the sites

[127], which can increase the computational cost.
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Figure 3.3: Multi-target approaches to forecast traffic in multiple locations

3.2.1.3 Problem Definition

Within this attribute, we have identified four sub-levels. The first sub-level is re-

lated to the type of data used as an input. Based on [5], there are three types of

inputs that can be used at the moment of feeding a ML model: using only tempo-

ral traffic data, temporal and spatial traffic data, and non-traffic data (e.g., calendar

data) to enrich any of the two aforementioned inputs. The second sub-level con-

sists of the time horizons for which predictions are made; in this taxonomy, we

categorise them into two groups: short- and long-term time horizons. The third

sub-level determines the time step defined for the input data, which, according to

[12, 13] can be grouped in three ranges: high, medium, and small resolutions. Fi-

nally, the fourth sub-level is the output definition in terms of the kind of traffic

variable to be predicted. Based on [13], the output variables can be travel time or
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a variable within the group of fundamental macroscopic variables (flow, density,

occupancy, speed). The four sub-levels mentioned above are presented as follows.

• Input Definition: A proper definition of input data is of great importance to

ensure the excellent performance of ML methods in general [18], which also

applies to TF. The main idea behind TF is to make predictions from a few

seconds to possibly a few hours into the future using current and past traffic

data, which is known as the temporal domain of traffic data [5]. Additionally,

in recent research, including spatial traffic data has been an essential consid-

eration in TF [9]. Several research articles have supported the improvement

of predictions due to the incorporation of upstream or downstream traffic data

[28, 29, 106, 116, 117, 121, 124, 128, 129].

On the contrary, some factors affect traffic but are not part of its pattern be-

haviour such as weather or calendar data. Feeding this type of non-traffic

data into ML methods can enhance their predictions [130]. In this context,

TF problems can contain up to three categories of input data, which are de-

scribed below: temporal, temporal and spatial, and non-traffic data.

– Temporal: Traffic predictions can be made using only temporal traffic

data of the scale of prediction under study. In the transportation litera-

ture, we can find studies that use either one time-series associated with

a single traffic measure or several time-series of different measurements

taken by the same data sensing technology [5]. These two approaches

are compared in Figure 3.4.

Feeding ML models with only temporal data can be considered the most

simple TF problem [131–135]. In the case of only using one time-

series, the definition of the input data ends with a vector representation,

which includes the current state f of the traffic variable of interest at

time t and its previous n states ft−n. On the other hand, when us-

ing more than one time-series belonging to m traffic variables, the in-

put definition is a matrix representation that includes the current traffic

states fm,t of the variables and their previous n values fm,t−n. It is im-

portant to clarify that in both cases, the preparation of the dataset results
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in a structure that contains features and samples. This is explained in

more detail in the Modelling specifications (see Section 3.2.2).

Figure 3.4: Temporal traffic data. Adapted from [2]

– Temporal and Spatial: Although there is extensive literature demon-

strating that reasonable accuracy can be achieved using only temporal

traffic data [132, 136–141], there is evidence that shows how incor-

porating the spatial component of traffic can improve the accuracy of

predictions [9, 36]. Representing the predictions of traffic as a function

of time and space is theoretically valid because considering temporal

and spatial data from other physical locations allows the dynamics of

traffic to be captured [13].

The input definition of this data leads to a matrix representation that

incorporates time and space domains using the temporal data from both

the target position P1,t−n and the other m positions Pm,t−n, as is shown

in Figure 3.5. This process requires identifying the spatial correlations

of the locations under study to determine what positions are included

and which can increase the computational complexity of the problem at

hand. To reveal this dependency, it is necessary to examine the target

location with its upstream and downstream sites and surrounding areas.

The latter can be tackled using correlation analysis or by including a set

of measurement positions within a pre-defined r radius [29, 125, 126]
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with respect to the target location. Once this has been done, the next

step is to transform the matrix representation to a dataset format with

features and samples (see Section 3.2.2).

Figure 3.5: Temporal and spatial traffic data. Adapted from [2]

– Non-traffic Data: Factors that are not part of the seasonal dynamism

of traffic can play an important role in the accuracy of predictions.

Weather and time of year, among others, are elements that matter in the

forecasting process. Although some of them can be difficult to predict,

their inclusion in the preparation of datasets enhances the performance

of ML models [2, 9, 130]. The addition of non-traffic data leads to

developing responsive forecasting schemes that improve the decision-

making process of traffic management [5, 9].

Transportation literature reports that the incorporation of non-traffic

data with temporal and spatial traffic data is an open issue [9]. Besides,

calendar and weather data are the most frequently used exogenous vari-

ables for TF [9, 113, 131, 142–147]. From a data preprocessing per-

spective, the incorporation of non-traffic data increases the model com-

plexity and dimensionality of the datasets. Besides, it is necessary to

take standard procedures into account to integrate exogenous factors

from different data sources into the traffic data provided by point, in-

terval, or moving sensors (read further about approaches used for data

fusion in traffic forecasting in [148]).
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• Time Horizon: This attribute represents the extension of time into the future

over which a traffic variable is predicted. We have identified two sub-levels

of this attribute: a short-term attribute that categorises the most common

TF problems that fall into the time horizon interval at less than 60 minutes

([28, 29, 106, 116–120, 125, 125, 128, 129, 149]); and a long-term attribute

that enables the categorisation of TF problems focused on long-term time

horizons at more than 60 minutes [115, 121, 131, 136, 139, 141, 144, 145,

150].

According to transportation literature [12, 13, 151], it has been observed that

longer time horizons generally cause more significant inaccuracy, and there-

fore most recent literature reviews show that research commonly predicts

traffic up to 60 minutes into the future [5, 9]. Specifically, research suggests

the appropriate prognosis horizon is between the range of 5 to 30 minutes

into the future [13, 152]; however, Laña et al. [9] recommend that long-term

time horizons, beyond 60 minutes, are needed to improve the management

of traffic flows at the network level. In this context, enhancing the forecast-

ing capacity of ML methods is still an open issue approached by very few

authors (see Section 3.3 and [9]).

• Time step: In ML datasets preparation, defining the appropriate time step is

an essential element because it affects the quality traffic information lying in

the data. This attribute categorises the time interval upon which predictions

are made and the frequency of time used to reach the time horizon defined in

every TF problem. Three sub-levels are identified: high, medium, and small,

and are described below.

In general, high-resolution time steps (e.g., traffic data sensed every 30 sec-

onds) incorporate noise to the input data [5, 13], and the resultant ML models

are more prone to overfitting. In this sense, data preprocessing is required to

reduce noise in the input data [153, 154]. On the other hand, there is the case

of small resolution time steps. They influence the elimination of important

data variations and traffic information within the data [155], which is needed

during the training of models to keep a balance between bias and variance.
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According to [5], there is no reliable approach to select the appropriate time
step. In spite, the category of the medium resolution, which encompasses TF
problems with time steps between 5 and 15 minutes, contributes to having
an equilibrium between noise and the loss of valuable information within the
data [13].

• Output definition: In every TF problem, there is a clear link between the
traffic measure to be predicted and the data source used for such a task [16].
This attribute defines what traffic measure is considered as the output of ML
methods depending on the type of data available. Here, we have identified
two sub-levels. First, there is the category of fundamental macroscopic traffic
variables [13] that includes flow, density, occupancy, and speed. On the other
hand, the second sub-level is related to forecasting travel time which, as it is
explained in the Travel Time Data Collection Handbook [156], provides a
common ground for communication between transportation engineers, plan-
ners, administrators and non-expert travellers [13, 14, 16].

– Fundamental: This category includes flow, occupancy, speed and the
traffic measures that can be calculated based on them, for instance, LoS
[99]. Flow and occupancy are traffic measures directly taken by point
and interval detectors at the locations where the sensors are situated
[16]. Sometimes, the sensors are placed on every lane of a road, and it
is up to the modeller to decide if the predictions would be performed
for each lane or aggregation of lanes. Current transportation literature
shows that research endeavours are well distributed between flow and
occupancy forecasting without any special considerations at the mo-
ment of choosing any of the two traffic measures [29, 106, 115, 117–
120, 122, 123].

The prediction of speed is strongly connected to whether the available
data source senses this traffic measure or not. If the available data
comes from point detectors, which do not have the capacity of detecting
speed [16], flow and occupancy are used to calculate velocity; giving
rise to a speed estimation rather than a prediction. If the available data
source is interval detectors, they can collect the speed of each vehicle
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by using its travel time between the two sensors [157]. This measure

is called point speed, and it is only valid when describing the speed at

the points where the sensors are located [158]. To prepare ML datasets

with this latter measure, the point speed of all vehicles passing the sen-

sors must be aggregated, generally, by means of the time mean speed

technique to generate the velocity feature [156].

Finally, if the available data comes from moving sensors, speed can

be incorporated in the GPS traces or not. In the event of not being

included, it is possible to calculate the average speed for each road seg-

ment, travelled by every moving sensor, which has at least two GPS

data points. The resultant measure is the traffic speed at that specific

road segment for each vehicle sensed (for more details about how to

preprocess this data see [159, 160]). Then to forecast speed, a time-

series of traffic speed must be built by aggregating the estimated speeds

of every moving sensor available. Such predictions have segment and

network spatial coverage that offers more details about the real traffic

conditions on the roads [28, 124, 126].

– Travel Time: This attribute is associated with another significant direc-

tion of TF problems focusing on forecasting travel time. It is defined

as the time needed to cross two fixed points along a road [13]. As in

the case of speed prediction, travel time forecasting is connected to the

availability of the appropriate data for such a task [5, 16]. If the avail-

able data source technology supports the direct sensing of travel time

(e.g., GPS, AVI systems), it is predicted using the measured data taken

by detectors [13] (see [16] for more details regarding sensing technolo-

gies of travel time).

In the case of using point sensors [129, 161–163], travel time forecast-

ing is based on their capability of sensing point speed, and then, making

use of trajectory methods [16] during the preparation of ML datasets to

calculate travel time. The main idea of these methods is to take a whole

road and divide it into smaller segments, where each of them is defined

as the length between two detectors. The detector at the beginning of
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one segment is called the upstream sensor, while the one at the end of
the segment is the downstream detector. With this configuration, the
most straightforward way to extend the point speed measurements to
the segment is by using piece-wise constant methods [164–166]. Thus,
a travel time feature is generated based on the point speed measures
belonging to the areas of interest.

3.2.2 Modelling Specifications
Supervised ML is the process of learning a mapping function (f : X → Y ) between
Y , the dependent variable/s, and X , the independent variable/s [55]. The focus
is on modelling and predicting how the dependent variable/s change/s when the
independent variable/s vary/ies over time, as is the case for TF.

Most of the transportation literature describes characteristics of TF problems
centered on traffic-related attributes [5, 9, 12–14, 16, 36]. Nevertheless, none of
them gives an account of criteria that categorise how to modelling: 1) the input
and output data, 2) the steps of predictions, and 3) the preprocessing process of the
input data.

In this section, we define the attributes: input modelling, output modelling,
step of prediction, and data preprocessing. Each of them, together with their sub-
attributes, are presented and described below.

3.2.2.1 Input Modelling

This attribute is related to how the samples of the input data are modelled to gen-
erate a dataset. We have identified two sub-levels within it. In the first case, the
samples are modelled as vectors, while the second sub-level categorises TF prob-
lems where the input samples are modelled as high-order tensors. These two input
modelling categories are described as follows.

Vector

This attribute presents the TF problems in which every input data sample is mod-
elled with a vector representation. We give the following two examples to illustrate
this.
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The first example corresponds to a fundamental TF problem whose input con-

tains only temporal traffic data, as is depicted in Figure 3.6. Explicitly, given a

sequence of historical data of (n) measures, which belongs to a traffic parameter

(f) sensed during a time interval (t) at a position (P ), it can be modelled to look

like a supervised learning problem employing the sliding window method [78].

Figure 3.6: Vector to modelling temporal traffic data

According to Figure 3.6, after the input definition phase, the next step is to gen-

erate a time-series representation from the original sequence of data in which the

order of the samples is preserved. Then, two copies of the time-series are used to

generate two lagged-input variables named X(t−1) and X(t−2). Having done this,

the sliding window method consists of using the values of the previous time steps,

within X(t−1) and X(t−2), to predict the values at the next time steps in Y(t). For the

illustrative purposes of this example, we use a window size value of two. Never-

theless, careful thought and experimentation are needed within every TF problem

to find a window width that results in acceptable model performance.
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Figure 3.7: Vector to modelling temporal and spatial traffic data

After applying the sliding window method, the first two rows of X(t−1) and

X(t−2) have insufficient data to predict the f(1) and f(2) values in Y(t). Besides,

there are no known next values in Y(t) to be predicted using the f(n) measures of

X(t−1) and X(t−2). These four rows of missing values are deleted to obtain the

final dataset, which has two features (X(t−1) and X(t−2)) and a column of target

labels (Y(t)). In this resultant data structure, each pair (X(i−1), X(i−2)) of samples

is modelled as a two-dimension vector that can be fed into any of the standard linear

and nonlinear ML methods.

The second example is presented in Figure 3.7, which shows a more complex

TF problem. In the input definition phase, there are three different traffic measures:

speed (S), volume V , and occupancy O. Each of them has (m) sequences of

historical data sensed by (m) detectors spatially ordered along a road segment,
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during a time interval (t). Following the process described in Figure 3.6, the sliding

window method re-frames the input data as a supervised learning problem with a

generic window value of (i). Having done this, the resultant process leads to up to

S(m,t−i), V(m,t−i), and O(m,t−i) features being obtained. Their values at the (n − i)
previous time steps are used to forecast the real or discrete values within Y(P,t), P

being the position where the target detector is located.

High-order Tensor

This attribute categorises the TF problems wherein the input data is modelled using

a tensor of an order greater than two. Figure 3.8 illustrates how the three traffic

measures (speed, volume, occupancy), used in the example of Figure 3.7, are put

together to generate a three-dimensional data matrix of size (m,n, 3). This 3-D

data structure contains (3 ∗m) rows whose historical sequences are sensed during

(n) time steps over (m) detectors spatially ordered on a road segment.

Figure 3.8: High-order tensor to modelling temporal and spatial traffic data
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The next step is to define a sequence length (for this example with a value of 3)

to simultaneously sample the three dimensions of the matrix and extract (n− l+1)

data samples of size (m, 3, 3), as is shown in Figure 3.8. These data samples are

vertically stacked to produce the data-set that is commonly fed into Deep Learning

(DL) methods, which can capture the spatial dependencies of traffic data concern-

ing traditional ML methods in a more realistic way [28, 106, 129]. As with the

sliding window method, the sequence length needs to be carefully defined using

experimentation to achieve appropriate model performance.

3.2.2.2 Output Modelling

This attribute categorises TF problems depending on the number of traffic variables

to be predicted. Within it, we have identified two sub-levels. On the one hand, if

there is only one variable to forecast, the modelling process leads to a single-target

problem. Contrarily, if the TF problem at hand is focused on making predictions

for more than one variable, the modelling process of the output is a multi-target

problem. These two input modelling processes are described below.

Single-target

This attribute categorises TF problems in which there is only one traffic measure

to be predicted (Figure 3.9). From a ML perspective, this is known as a standard

regression or classification problem [55] that consists in training a model able to

predict, for either a given vector or high-order tensor sample, a real or discrete

value. As shown in Figure 3.9, this problem has the form Y(t) = X1,(t−i) wherein

Y(t) is the output vector that contains the value of the following steps values to be

predicted using previous time steps Xm,(t−i).

Figure 3.9: Single-target output

Currently, most research on the transportation literature is focused on predicting

a single traffic variable using either only temporal traffic data or both temporal
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and spatial traffic data [28, 29, 106, 115–118, 120–125, 125, 126, 128, 129, 149].

Besides, the most common target is any of the fundamental macroscopic traffic

variables [131–140, 142, 146, 147, 152]; whilst, the prediction of travel time has

been less explored [121, 162, 163, 167].

Multi-target

This attribute presents those TF problems that have more than one output variable

to be predicted (Figure 3.10). From a ML approach, this type of problem has an

output space of more than one dimension [55]. As can be seen in Figure 3.10, a

multi-target problem has the form (Y(1), ..., Y(n)) = (X1,(t−1)...Xm,(t−i)) in which

there are Y(n) traffic measures to be predicted based on the previous time steps of

X(m) input features.

Figure 3.10: Multi-target output

The transportation community has recently assumed this multi-target approach

to model, comprehensively, the exact form of traffic dynamics. It does generate,

however, issues related to the selection of the proper data-driven method. The

overall experience in multi-target modelling points out the use of non-parametric

techniques, such as NNs [13, 168], to predict fundamental macroscopic traffic vari-

ables together with travel time [119, 161, 169].

3.2.2.3 Step of Prediction

This attribute is related to modelling the number of time horizons in which traf-

fic predictions are made into the future. We have identified two sub-levels in this

attribute: single wherein predictions are performed for a single time step, and mul-

tiple wherein predictions are done over more than one time horizon. These two

sub-levels are presented below.
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Single

This attribute categorises TF problems in which there is only one time horizon. It

corresponds to a single-target problem wherein there is a single traffic measure to

be predicted. The latter has the form Y(t) = Xm,(t−i), being (t) the target step.

In the transportation literature, TF problems with a single step of predictions

are approached through parametric and non-parametric ML methods [29, 117–119,

122, 123, 126, 149]. Nevertheless, from a practical perspective, single prediction

intervals can support neither the short-term operational decision-making nor the

medium- and long-term transportation planning, as they cannot describe how traffic

will evolve beyond few minutes into the future [9, 13].

Multiple

This attribute classifies the TF problems wherein there is more than one future time

step to be predicted. Specifically, there can be multiple time steps for either one

target traffic measure or a set of them; which leads to a multi-target problem in the

form Yn,(t+i) = Xm,(t−i). Let (n) be the output traffic measures and (t + i) the

number of time horizons to forecast.

TF problems with more than one time horizon in the future are quite well-

documented in the literature [28, 106, 115, 116, 120, 121, 125, 125, 128, 129]. In

contrast to single time step problems, multiple steps provide a more robust ground

for decision-makers during traffic flow management [13, 168].

3.2.2.4 Data Preprocessing

This attribute categorises TF problems in terms of the preprocessing tasks required

to model their input data in a way that allows them to be processed by ML methods.

According to data mining literature [42], Data Preprocessing (DPP) can be divided

into data preparation and data reduction (more details of these two categories, with

their respective techniques, can be consulted in [42]). However, for the purpose of

the proposed taxonomy, we have split them into three categories: data preparation,

incomplete data, and data reduction.
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Data Preparation

This attribute categorises TF problems with respect to processes required for prepar-

ing the raw traffic data into the minimum format accepted by ML methods. Data

preparation guarantees that the methods operate correctly without reporting errors

during their run-time due to a no valid data format. Within this attribute, three

approaches are presented below.

The first approach is data cleaning that is focused on detecting and discarding

corrupt records within the raw data. The latter means eliminating incorrect data that

does not make sense in the context of traffic measures, for instance, negative values.

The second approach is the data transformation, whose objective is to improve the

input data to become more efficient in the forecasting process of ML methods. This

task involves generating new features and normalising or rescaling the input data

to establish the same measurement scale.

Finally, the third approach is data integration that is related to the merging pro-

cess of data that comes from different sources (for more details see [148]). In this

case, such combination corresponds to the fusion of traffic data sensed by multiple

sensors or, even, the inclusion of non-traffic data into the traffic data-sets.

Imperfect Data

This attribute classifies TF problems about the processes needed to fill in miss-

ing values and to identify noise in the raw data. In the first case, faulty reading,

malfunctioning hardware or transmission errors of the traffic detectors can cause

empty records. Filling in these gaps is essential to guarantee accurate predictions.

This process can be performed using different strategies ranging from a simple null

value imputation to complex spatio-temporal context imputation models (see more

details of the imputation of missing data for road traffic forecasting in [170]). In

the latter case, the objective is dealing with noisy input data to detect random errors

and to reduce data variability using smoothing techniques. This can improve the

quality of the training data and avoid overfitting issues.
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Data Reduction

This attribute categorises TF problems in terms of data reduction techniques ap-

plied to obtain a reduced representation of the input data; which enables ML meth-

ods to reduce the computational cost of their training process. This representation

is smaller at the same time it maintains the integrity and variability of the origi-

nal data [42, 171]. The three approaches that categorise the Data Reduction of TF

problems are explained below.

First, the feature reduction approach aims to remove irrelevant-redundant fea-

tures to find a minimum set of attributes that increases the speed of the learning

process (for more details, see the review in [172]). The second approach is in-

stance reduction, which is related to choosing a subset of samples from the whole

traffic dataset to achieve the desired forecasting performance as if the complete data

was used by the ML methods [42].

Lastly, the third approach is discretisation, which transforms continuous data

values into categorical values within a finite number of intervals. This is useful

for the integration of non-traffic data such as weather conditions, wherein constant

values are mapped into discrete attributes that classify the climate conditions on the

roads based on nominal values.

3.3 The Taxonomy in Action: Categorisation of Traf-
fic Forecasting Literature
In this section, we analyse the taxonomy to check its robustness and its ability to

discriminate papers that have approached different TF supervised problems. Table

3.1 is devoted to categorising a sample of relevant articles published between 2017

and 2019, and Table 3.2 includes references dated from 2014 to 2016 that are taken

from the most updated survey in TF [9]. Besides, Table 3.3 exhibits a sample of

the main references from 2000 to 2013.

Every paper is categorised according to the sub-attributes within the four main

blocks of the taxonomy (in Figure 3.1 they are 1. Data Source, 2. Scope, 3. Prob-

lem Definition, 4. Modelling). The names of these main blocks are the shaded

columns in Tables 3.1, 3.2 and 3.3. When a particular sub-attribute is present in the
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Figure 3.11: Summary of 2000-2019 TF literature categorised by the taxonomy

TF problem approached by an article, its acronym (see Figure 3.1) is added to that

specific cell. All described sub-attributes are present in at least one paper, which

shows that no unnecessary attributes have been introduced in the taxonomy.

Figure 3.11 presents a summary of the findings extracted from the categorisa-

tion of the literature published between 2000 and 2019. Concretely, on its x-axis,

all the attributes within the four blocks of the taxonomy can be seen. For each

attribute, there is a stacked bar that depicts the percentage of the transportation

literature (y-axis) that has addressed its sub-attributes.
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As can be seen in Figure 3.11, regarding attribute 1. Data Source, point de-

tectors are the most common sensing technology used. The majority of the trans-

portation literature categorised has approached TF problems that contain this type

of data source exclusively. Only three papers [143, 169] highlighted in Tables 3.1

and 3.2 include more than one kind of data source. In this sense, the integration

of multiple data sources is an opportunity from the transportation perspective and

a challenge in the ML area. Using multiple data technologies can contribute to

representing the traffic conditions on the roads in a more realistic way; however,

such a data fusion is a demanding modelling task during the preprocessing process

of the input data.

The data source availability mentioned above also affects the spatial coverage

of predictions. The stacked bar of attribute 2.2 Spatial Coverage shows that a

few papers have approached TF problems at the network level. The latter is in

concordance with the low usage of moving data due to privacy and availability

issues [16]. On the other hand, the most common TF problems are the ones in

which the prediction of traffic is focused on either point or segment levels using

point or interval detectors.

In the case of attribute 2.1 Context there is an apparent balance in the literature

between the TF problems handled in either urban or freeway contexts. Only two

studies in Table 3.1 approach the prediction of traffic in both settings at the same

time. In this case, the computational challenge is focused on developing methods

that learn traffic patterns of both contexts or developing models that separately

predict traffic for the two environments.

Concerning the attribute 2.3 Target, Figure 3.11 shows that most of the liter-

ature approaches TF problems that consider a single spatial target for predictions.

Multiple targets are considered when traffic is only predicted for more than one

point or segment. For multiple targets, research is still needed to find out whether

adopting a local or a global strategy to handle the prediction along various locations

would more suitable in terms of computational cost and accuracy.

In the case of attribute 3.1 Input Definition, the majority of papers have ad-

dressed the prediction of traffic using only temporal traffic data. When spatial traf-

fic data and non-traffic data are considered to enhance TF, such input enrichment
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Table 3.1: Transportation literature, published between 2017 and 2019, categorised
by the taxonomy
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[125] Pt Ub Sg Mt T ST Md Fd Vc ST Mt ID + DR
[128] Pt Fw + Ub Sg Mt TS ST Md Fd HT ST Mt DP + ID
[119] Pt Ub Pt Sn T ST Md Fd Vc MT Sn -*
[120] Pt Ub Pt Mt T ST Md Fd Vc ST Mt -*
[115] Pt Fw Sg Mt T LT Hg + Md Fd Vc ST Mt -*
[116] Pt Fw Sg Sn TS ST Hg Fd Vc ST Mt DP
[117] Pt Fw Pt Mt TS ST Md Fd Vc ST Sn DP
[118] Pt Fw Pt Sn T ST Hg Fd Vc ST Sn -*
[149] Pt Fw Pt Mt T ST Md Fd Vc ST Sn -*
[121] It Fw Sg Sn TS LT Md TT Vc ST Mt DP
[129] Pt Fw Pt Mt TS ST Md Fd HT ST Mt DP
[28] Mv Ub Nw Sn TS ST Md Fd HT ST Mt -*

[106] Mv Ub Nw Sn TS + ND ST Md + Sm Fd HT ST Mt DP
[29] Pt Fw Pt Mt TS ST Md Fd Vc ST Sn DP

[173] Pt + Mv Fw + Ub Pt + Sg Mt TS ST Md Fd HT ST Sn DP + ID
[126] Mv Ub Nw Sn TS ST Md Fd Vc ST Sn DR
[122] It Fw Sg Sn T ST Md Fd Vc ST Sn -*
[123] Pt Ub Sg Sn T ST Md Fd Vc ST Sn ID + DR
[124] Mv Ub Sg Mt TS ST Md Fd Vc ST Sn ID + DR

is usually modelled through vector representations (stacked bar 4.1 Input Mod-
elling). The latest can lead to losses in the spatial dependencies of traffic data. As

is highlighted in Tables 3.1 and 3.2, a few studies [28, 106, 128, 129, 184] have

used a high-order tensor to generate multi-dimensional data input structures.

Regarding attributes 3.2 Time Horizon and 3.3 Time Step, the forecasting of

traffic is focused on short-term predictions using medium resolution data (between

5 and 15 minutes). In the case of both small and high time steps, the literature

avoids these data resolutions because of the loss of valuable information and the

inclusion of noise in the input data. In this context, the data science challenge lies

in determining how the structure of the input data can contribute to obtaining long-

term predictions without losing accuracy and keeping low the computational cost

of training ML models.

In the area of what traffic measure is predicted (attribute 3.4 Output Defini-
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Table 3.2: Transportation literature, published between 2014 and 2016, categorised
by the taxonomy
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[174] Pt Ub Sg Sn T ST Hg Fd Vc ST Sn DP + ID
[169] Pt + It + Mv Fw Sg Sn T ST Md Fd + TT Vc MT Mt ID + DR
[142] Mv Ub Nw Sn TS + ND ST Md Fd Vc ST Mt DP + ID
[131] Pt Fw Sg Sn T + ND LT Md Fd Vc ST Mt DP
[136] Pt Ub Pt Mt T LT Sm Fd Vc ST Mt DP + ID
[146] Pt Ub Nw Sn TS + ND ST Hg Fd Vc ST Mt DP
[137] Pt Ub Pt Mt T ST Md Fd Vc ST Sn ID
[138] Pt Ub Pt Mt T ST Sm Fd Vc ST Mt -*
[147] It Ub Nw Sn TS + ND ST Hg Fd Vc ST Mt DP + DR
[132] Pt Fw Pt Sn T ST Hg Fd Vc ST Mt ID
[139] Pt Fw Sg Sn T LT Hg Fd Vc ST Mt -*
[133] Pt Fw Pt Sn T + ND ST Md Fd Vc ST Sn DP
[134] Pt Fw Sg Sn TS ST - Fd Vc ST - DP
[152] Pt Fw Nw Sn TS ST Hg Fd Vc ST Sn DP
[140] Pt Ub Pt Mt T ST Md Fd Vc ST Sn -*
[135] Pt Fw Pt Sn T + ND ST Hg Fd Vc ST Mt DP + DR
[161] Pt Fw Pt Mt TS ST Hg Fd + TT Vc MT Sn DP + ID
[141] Pt Fw Pt Mt T LT Md Fd Vc ST Mt DR
[162] Pt Fw Nw Sn TS ST Hg TT Vc ST Mt DP
[144] Pt Fw Sg Sn T + ND LT Hg Fd Vc ST Mt DP
[145] Pt Fw Pt Sn T + ND LT Md Fd Vc ST Mt DP
[175] Pt Fw Sg Sn T ST Md Fd Vc ST Sn ID
[176] Pt Fw Pt Sn T ST Md Fd Vc ST Sn -*
[177] Pt Fw Pt Sn TS ST Md Fd Vc ST Sn DP
[178] Pt Fw Sg Sn TS + ND ST Md Fd Vc ST Mt DP
[179] Pt Fw Pt Sn T ST Md Fd Vc ST Sn DP
[180] Pt Fw Pt Sn T ST Md Fd Vc ST Mt DP
[181] Mv Ub Nw Sn T ST Md Fd Vc ST Mt DR
[182] Mv Fw Sg Sn TS ST Hg Fd Vc ST Sn -*
[183] Mv Ub Pt Sn T ST Md Fd Vc ST Sn DP
[163] It Ub Nw Sn TS ST Md TT Vc ST Mt ID
[167] Mv Fw Sg Sn TS + ND ST Md TT Vc ST Mt ID
[150] Pt Ub Pt Sn T LT Md Fd Vc ST Mt DP
[143] Pt + It + Mv Fw Nw Sn T + ND ST Md Fd Vc ST Sn DP
[168] Pt Ub Pt Mt T LT Md Fd Vc ST Mt DR
[184] Pt Ub Pt Mt T ST Md Fd HT ST St -*
[185] Pt Ub Nw Sn TS ST Md Fd Vc ST Mt DP + ID
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Table 3.3: Transportation literature, published between 2000 and 2013, categorised
by the taxonomy
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[186] Pt Fw Sg Sn TS ST Hg TT Vc ST Mt DP + ID
[187] Pt Fw Pt Sn T ST Hg Fd Vc ST Mt -*
[188] Pt Fw Sg Sn T ST Md Fd Vc ST Sn DP + DR
[189] Pt Fw Pt Sn T ST Md Fd Vc ST Sn DR
[190] Pt Fw Pt Sn TS ST Hg Fd Vc ST Mt DP + ID
[191] Pt Fw Sg Sn T ST Md Fd Vc ST Mt ID
[192] Pt Fw Pt Sn T LT Sm TT Vc ST Mt -*
[111] Mv Ub Sg Sn TS ST Hg Fd Vc ST Sn -*
[193] Pt Fw Pt Sn T ST Md Fd Vc ST Sn -*
[194] Pt Fw Pt Mt T ST + LT Hg + Md + Sm Fd Vc MT Mt -*
[195] Pt Fw Pt Mt T ST + LT Sm Fd Vc ST Mt -*
[196] Pt Ub Pt Sn T ST Md Fd Vc ST Sn -*
[197] Pt Fw Pt Mt T ST Md Fd Vc ST Sn DP + ID
[198] Pt Ub Pt Sn T ST Md Fd Vc ST Mt -*
[199] Pt Fw Pt Sn TS ST Md Fd Vc ST Sn DP
[200] Pt Ub Pt Mt T ST Hg + Md Fd Vc ST Mt -*
[201] Pt Fw Pt Sn TS ST Md Fd Vc MT Sn DP + ID
[202] Pt Fw Pt Sn T LT Sm TT Vc ST Mt -*
[203] Pt Fw Sg Sn T LT Md TT Vc ST Mt -*
[204] Pt Fw Sg Sn TS ST Md Fd Vc ST Sn DP + ID + DR

tion), choosing any of the fundamental macroscopic variables is the predominant

approach despite the relevance of forecasting time travel being previously stated in

[5, 13, 16]. From the perspective of how many traffic parameters are predicted, the

taxonomy demonstrates that most TF problems are focused on single-target output

predictions (stacked bar 4.2 Output Modelling). The latter opens the possibility

to explore the benefits and challenges of multiple output targets, which according

to Tables 3.1 and 3.2 has been approached by very few studies [119, 161, 169].

Finally, the DPP in TF problems (attribute 4.4 Data Pre-processing) is mostly

focused on data preparation tasks, particularly, data cleaning, data integration and

data transformation. Notwithstanding, Tables 3.1, 3.2 and 3.3 show that many pa-

pers reviewed do not include any DPP. These cases are highlighted with the symbol
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(-*) in the column 4.4 Data Pre-processing of the tables, and although the authors
performed the aggregation of input data into small, medium, or high time steps, this
is not considered to be DPP because is an implicit task for all TF problems. The
absence of DPP could be due to the fact that many articles use data sources sensed
by third parties, which preprocess the traffic data before making it available.

3.4 Families of Traffic Forecasting Problems
Based on the literature categorisation, this section presents families of TF prob-
lems, that is, groups of problems that share common attributes of the taxonomy. To
accomplish this purpose, first, we generated a unique sequence for each reference in
Tables 3.1, 3.2 and 3.3. The sequence identifies the TF problem approached within
every article. As can be seen in the example of Figure 3.12, the structure of each
sequence is determined by both the traffic- and the modelling-related attributes as-
signed with the proposed taxonomy. We obtained 76 sequences that correspond to
the total of papers reviewed between 2000 and 2019.

Figure 3.12: Example of sequence structure for a given TF problem

In the next step, we carried out a hierarchical clustering analysis considering
only the traffic-related attributes. The clustering process was done comparing the
76 generated sequences, and those with up to 4 different transportation attributes
were grouped in the same family. The modelling attributes were excluded in the
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generation of the families because we wanted to highlight common groups of TF
problems from a transportation perspective regardless of how they have been mod-
elled in the literature.

We identified ten families of TF problems that are shown in the dendrogram of
Figure 3.13. The branches represent how close one paper is to other studies in terms
of familiarity determined by the transportation attributes, and the colours depict
the families. The leaf nodes of the tree structure contain the papers categorised in
Tables 3.1, 3.2 and 3.3.

Figure 3.13: Hierarchical clustering analysis to extract families of TF problems

The ten families of problems are presented with more details in Table 1 3.4.

1Guide of acronyms: 1. Data Source: Point (Pt), Interval (It), Moving (Mv); 2.1 Context:
Freeway (Fw), Urban (Ub); 2.2 Spatial Coverage: Point (Pt), Segment (Sg), Network (Nw); 2.3
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The Table shows what traffic attributes characterise the families and how many of
the papers reviewed have been approached within each of them. The missing cells
along a single-family indicate that those transportation attributes, arranged in the
columns of Table 3.4, do not belong to the family under consideration.

Table 3.4: Families of TF problems with their main traffic attributes together with the
number of works classified within each family

Family
Family’s main traffic attributes Total of

works1. 2.1 2.2 2.3 3.1 3.2 3.3 3.4
Family 1 Pt - - Sn T ST Md Fd 16
Family 2 Pt + It + Mv Fw Sg Sn - ST Md - 4
Family 3 Mv, It Ub Nw Sn TS + ND ST - Fd 9
Family 4 Pt Fw Sg Sn - ST, LT - Fd 8
Family 5 Pt - Pt Mt T ST, LT - Fd 13
Family 6 Pt Fw Pt - T + ND, TS ST - Fd 13
Family 7 Pt Fw - Sn TS ST Hg - 4
Family 8 Mv Ub Sg - TS ST- Md Fd 3
Family 9 Pt + Mv Fw + Ub Pt + Sg Mt TS ST Md Fd 2

Family 10 Pt Fw - Sn T LT - TT 4

According to Table 3.4, the families that have more complex characteristics, in
terms of the integration of multiple data sources and the prediction of traffic at the
network level, are those that represent traffic conditions in a more realistic way (for
instance, families 2, 3 and 9). However, these families have been approached by
very few papers, which means that they are still open issues within the transporta-
tion literature because of the computational challenges that they bring with them.
In contrast, the most straightforward families (numbers 1,5 and 6) are those that
contain the highest number of papers together with the more traditional transporta-
tion scenarios (point data sources and prediction both at the segment level and at
single points on the roads). How ML methods can successfully deal with these
families is well documented in the literature but, at the same time, it is still nec-
essary to determine the most suitable ML methods, in terms of computational cost
and efficiency, to approach these families of problems.

Finally, the influence of data preprocessing on the families of TF problems
is also discussed. Figure 3.14 shows how many papers within every family of

Target: Single (Sn), Multiple (Mt); 3.1 Input Definition: Temporal (T), Temporal + Spatial (TS),
Non-traffic Data (ND); 3.2 Time Horizon: Short-term (ST), Long-term (LT); 3.3 Time step: High
(Hg), Medium (Md), Small (Sm); 3.4 Output Definition: Fundamental (Fd), Travel Time (TT).
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problems have included data preprocessing. As shown below, there are 9 families
in which there is, at least, one paper that does not incorporate DPP.

Figure 3.14: Number of papers that include data preprocessing techniques within the
families of TF problems

Figure 3.15: DPP approaches within each family of TF problems

More concretely, Figure 3.15 presents how many times the data preprocessing
attributes of the taxonomy (Data Preparation - DP, Imperfect Data - ID, Data Re-
duction - DR) have been used in the studies classified through the ten families. As
can be seen, DP is the most common approach followed by ID and DR. In this
sense, although the preprocessing of input data is a fundamental stage in the mod-
elling process of ML methods, in the transportation literature it has been scarcely
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studied. Therefore, the influence of data preprocessing in the model selection prob-

lem, given the characteristics of a particular TF problem, is still an open issue.

3.5 Conclusions
In this chapter, we have proposed a taxonomy to categorise families of TF prob-

lems from a supervised learning perspective. Concretely, the taxonomy is built

based on two types of attributes to categorise the problems: traffic and modelling

specifications. The first includes transportation-related attributes that are the type

of data source, the context and spatial coverage of predictions, the input and output

variables considered, the time horizon of predictions, and the time step of data. The

second set of attributes introduces specification about how the input and output data

and the steps of forecasts can be modelled from a supervised learning perspective.

To check the robustness of the taxonomy, we categorised research studies pub-

lished in the transportation literature from 2000 to 2019. As a result, the taxonomy

analysis allowed the extraction of 10 families of TF problems whose complexity

change mainly depending on the number and type of data sources used and on the

scale of predictions. The families of TF problems most commonly approached are

those that incorporate point detectors as the primary data source.

Given the categorisation of TF problems identified, it is possible to point out the

lack of guidelines to determine the most suitable approaches to address each prob-

lem. It also is essential to highlight the absence of data prepossessing techniques

in the modelling process of TF families. The current trend is focused only on the

integration of traffic data coming from different data sources and the improvements

of incomplete data (missing values and noisy data). The scarce inclusion of data

preprocessing techniques in TF is a critical issue as ITSs are continually measuring

and storing raw traffic data that needs to be preprocessed before being fed into ML

methods. However, being ML knowledge an expensive asset not always afford-

able, it is hard to work on the synergies between preprocessing techniques and ML

algorithms.

Determining the best combination of preprocessing techniques and ML method

in the absence of ML knowledge is not an easy task, which implies human effort

and times. Therefore, AutoML is a promising strategy to approach the MSP in TF.
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3.5 Conclusions

It allows us to automatise the complete ML workflow (from data preprocessing to
model validation) to reduce human effort and bias at the moment of deciding what
model to use to approach a given TF problem while keeping the performance of
predictions. Thus, in the following chapter, we present an analysis of the strengths
and weaknesses that AutoML has when it deals with different supervised TF prob-
lems.
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Nothing in life is to be feared, it is
only to be understood. Now is the
time to understand more, so that we
may fear less.

Marie Curie CHAPTER

4
General-purpose AutoML in

Traffic Forecasting

4.1 Introduction
As it was seen in the previous chapter, different ML algorithms and preprocessing
techniques may be more appropriate for different TF problems. Determining the
best pipeline (sequence of data preprocessing techniques and a learning algorithm)
for making traffic predictions is not a trivial task, especially when ML expert anal-
yses are not available. As discussed in Sections 2.3.4 and 2.5.3, this challenge is
known as the MSP and AutoML has been one of the most successful approaches
addressing it so far. AutoML aims at automatically finding competitive combina-
tions of preprocessing techniques, ML algorithm and hyperparameters for given
data without being specialised in the domain-knowledge wherein the data comes
from (general-purpose) [19]. This automation provides robust automated methods
that enable people, with either little or no specialised knowledge, to integrate ML
solutions into daily activities of research and business organisations.

Although recent literature [41, 80, 205] reports a variety of AutoML methods,
there are only a few that automatise the construction of a complete pipeline. Those
methods usually generate ML pipelines using an online search strategy, that is,
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a search strategy that takes place after the input dataset has been provided. In

some cases, this online search can be purely based on optimisation approaches

that test different promising combinations of pipelines structures from a predefined

base of preprocessing and ML algorithms to minimise or maximise a predefined

performance measure [20, 21].

Alternatively, there are AutoML methods whose online search is complemented

with learning strategies [1, 97, 98] typically focused on meta-learning [206]. These

techniques first extract meta-features of the input dataset at hand providing infor-

mation such as the number of instances, features, classes or entropy, among oth-

ers [98]. From these meta-features, meta-learning identifies good candidates of

pipeline structures from a predefined knowledge base that stores meta-features for

different datasets and pipelines that are likely to perform well on them. Then, the

candidate pipelines are used for a warm-start of the optimisation approach. Be-

sides, other AutoML approaches use the best-performing pipelines found during

the search to build an ensemble of models [1, 24]. This ensemble approach has

proven to be more robust than only using the best pipeline found via optimisation.

AutoML methods have been successfully used in other areas [41, 205]; how-

ever, an extensive analysis to determine the strengths and weaknesses of the search

strategies mentioned strategies has not been carried out in diverse learning tasks

such as TF. To the best of our knowledge, only one paper out of this thesis has used

concepts of AutoML in TF [23]. Vlahogianni et al. [23] proposed a meta-modelling

technique that based on surrogate modelling and a genetic algorithm optimises both

the algorithm selection and the hyperparameter setting. The AutoML task is per-

formed from a search space base of three ML methods (NN, SVM and radial base

function) to forecast average speed in a time horizon of 5 minutes. Although this

study showed promising results, the approach used by [23] is an approximation to

AutoML that does not consider the current advances of AutoML for ML pipelines.

In this context, determining to what extent general-purpose AutoML can be com-

petitive in TF is yet to be fully answered. Therefore, in-depth research efforts are

required to investigate whether current AutoML approaches can be competitive

against ad hoc methods on supervised learning tasks such as TF.

With these ideas in mind, in this chapter, we present a thorough exploration

of the strengths and weaknesses of general-purpose AutoML when dealing with
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supervised TF. Concretely, we test two well-established AutoML approaches based

on pure optimisation and meta-learning with optimisation in a sample of supervised

TF problems extracted from the taxonomy presented in Chapter 3. On the one hand,

we test Auto-WEKA (the pioneer AutoML method based on pure optimisation)

on a set of TF supervised regression problems characterised by having scales of

predictions at a single location and road segment within the freeway and urban

environments. We compare this AutoML method versus the general approach in

TF that consists of selecting the best of a set of commonly used ML algorithms.

Additionally, we also test Auto-sklearn (the pioneer AutoML method based

on meta-learning and optimisation) to approach the same TF problems mentioned

above but in this case modelled as supervised classification. We explore the per-

formance of the Auto-sklearn’s components through four scenarios: 1) a complete

hybrid search strategy that uses its three components (meta-learning, optimisation,

ensemble learning); 2) a meta-learning strategy combined with ensemble learning;

3) the knowledge base of the meta-learning component combined with ensemble

learning; 4) an approach based on the estimation of the best performing pipeline

from the knowledge base of meta-learning.

This chapter is organised as follows. First, Section 4.2 presents the methodol-

ogy that depicts the experimental framework proposed to explore the performance

of general-purpose AutoML in TF. Next, Section 4.3 analyses the main results

obtained. Finally, Section 4.4 summarises the main conclusions of the experimen-

tation and this chapter.

4.2 Methodology
This chapter seeks to answer if general-purpose AutoML based on pure optimisa-

tion and meta-learning with optimisation can adequately work in supervised TF.

To accomplish such purpose, we analyse to what extent Auto-WEKA and Auto-

sklearn, two state-of-the-art AutoML methods, can be competitive in TF. In this

context, we divided the experimentation into two parts, wherein each of them is

devoted to every one of the AutoML methods mentioned. Thus, the following parts

of this section are centred in giving more details about the supervised TF problems

considered and the experimental set-up.
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Supervised Traffic Forecasting Problems

As it was discussed in Chapter 3, there are approximately ten generic families of

TF problems. For each of those families, there are plenty of instances in which

traffic can be predicted under different transportation circumstances. In this sense,

it would be almost impossible to test the performance of AutoML across all the

TF families. The latter has a twofold justification. First, data availability is a

common issue in data-driven problems, and TF is not excluded from it. There

are a few traffic data sources available on the internet with high-quality standards

to make predictions, and they represent only a small percentage of the problems

that can be categorised by the proposed taxonomy. Secondly, as this is a research

thesis, it is needed to narrow the research field wherein knowledge contributions

are intended to be done. Such contributions must be conceived under time and

resources constraints that make hard to evaluate the performance of AutoML along

with a higher number of TF families.

Considering the context above, we decided to approach a sample of two TF

supervised families of problems with different instances of them. The first family

corresponds to the prediction of traffic at a target location in a freeway environment.

In the first place, using only past traffic data of this location (temporal data, T), and

then considering historical traffic data coming from the target location and four

downstream positions (temporal and spatial data, TS). Besides, in both instances,

the input is enriched with calendar data (CD).

The second family type is focused on forecasting traffic within an urban con-

text. Repeatedly, the predictions are made for a single target location considering

exclusively historical data of this spot; and on the other hand, taking into account

past traffic data of the target location together with four downstream positions.

Again, the input data in both instances is complemented with calendar data.

Freeway data is provided by the Caltrans Performance Measurement System 1.

This data is collected in real-time every 30 seconds from nearly 40,000 individual

detectors spanning the freeway system across the metropolitan area of California

(USA).

1http://pems.dot.ca.gov
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Figure 4.1: Location of 5 freeway sensors in California State (USA). The detector
marked with a ? symbol represents the forecast target location

The route selected for our experiments is the California Interstate I405-S. It is a

heavily trafficked freeway by commuters along its entire length [207]. Mainly, we

focus on the loop detectors shown in Figure 4.1, wherein the detector marked with

a ? symbol represents the forecast target location. The traffic measure collected

from the detectors is the speed in an aggregation time of 5 minutes within the time

window from March 1, 2019, to April 7, 2019 (38 days of data).

Contrarily, the urban traffic data is obtained from the Madrid Open Data Portal
1. The Madrid City Council provides through this website access to traffic data

around the whole city, publishing 5 - and 15-minutes aggregates of flow, occupancy

and speed data in more than 3600 measuring stations.

We chose the M-30 motorway that circles the central districts of Madrid, and

that is considered the busiest Spanish road because of its traffic jams. On this route,

we focus on the loop detectors depicted in Figure 4.2 where again the ? symbol

represents the forecast target location. From them, we extract traffic speed data, in

an aggregation time of 15 minutes, for the period between February 2, 2019, and

February 28, 2019 (27 days of data).

Based on the raw data presented above, we generate multiple datasets to predict

traffic using supervised regression and supervised classification approaches. In the

former modelling perspective, the traffic measure to be predicted is averaged speed,

a continuous traffic measure. For the latter modelling approach, the predicted traffic

1https://datos.madrid.es/portal/site/egob/
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Figure 4.2: Location of 5 urban sensors in Madrid city (Spain). The detector marked
with a ? symbol represents the forecast target location

measure is LoS that is a categorical variable calculated using traffic speed. The

following sections introduce with more details the datasets generated.

1. Datasets for supervised regression with Auto-WEKA: For the two fami-

lies of TF problems described above, we generate 18 datasets in which speed

is the traffic measure to be predicted. In the freeway case, the time horizons

of predictions are 5, 15, 30, 45, and 60 minutes using data granularity of

5 minutes (granularity means how often the traffic measure is aggregated).

Differently, for the urban TF problems, the forecasting time steps are 15, 30,

45, and 60 minutes with data granularity of 15 minutes. To better identify the

datasets, they are named following the next structure: Context InputData -

Granularity TimeHorizon.

Attributes of freeway datasets where the input is composed of only traffic

data from the target location together with calendar data are Day of the week;

Minute of the day; Traffic speed of the objective spot at past 5, 10, 15, 20,

25, 30, 35, 40, and 45 minutes; and Current traffic speed in such point. In

the case of freeway datasets where the input consists of historical speed taken

from the target location and four downstream detectors, the attributes are Day

of the week; Minute of the day; Traffic speed of the target position and four
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downstream locations at past 5, 10, 15, and 20 minutes; and Current speed

of these five spots.

Attributes of urban datasets in which the input comprises traffic data of the

target spot and calendar information are Day of the week; Minute of the day;

Traffic speed of the objective place at past 15, 30, 45, 60, 75, 90, 105, 120,

and 135 minutes; and Current traffic speed in this point of interest. Con-

trarily, urban datasets with past traffic speed from the target location and

four downstream positions in addition to calendar data, have the following

attributes: Day of the week; Minute of the day; Traffic speed of the target

position and four downstream locations at 15, 30, 45, and 60 minutes in the

past; and Current speed of this five positions.

2. Datasets for supervised classification with Auto-sklearn: In this case, we

model the two families of TF problems as supervised classification. Con-

cretely, the objective is to predict a categorical measure named LoS as a

multi-class classification problem based on continuous traffic speed. LoS is

used to categorise the quality levels of traffic through letters from A to E

in a gradual way. Category A indicates light to moderate traffic, whereas a

category E means extended delays [99].

For the two TF problems described above, we generated 36 datasets (20 for

freeway data and 16 for urban data). In the freeway case, the time horizons

wherein LoS is predicted are 5, 15, 30, 45, and 60 minutes using data gran-

ularity of 5 minutes. Unlike the freeway case, for the urban TF problem, the

forecasting time steps are 15, 30, 45, and 60 minutes with data granularity

of 15 minutes. To better identify the datasets, they are named following the

next structure: Context InputData TimeHorizon.

Attributes of the freeway and urban datasets where the input is composed of

only temporal traffic data from the target location and calendar data are Day

of the week; Minute of the day; Traffic speed of the objective spot at past 5,

10, 15, 20, 25, 30, 35, 40, 45 minutes for freeway and 15, 30, 45, 60, 75, 90,

105, 120, 135 minutes for urban; and LoS in the target location. In the case

of the freeway and urban datasets where the input consists of historical speed
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taken from the target location and four downstream detectors, the attributes

are the same mentioned above for the target location and also include traffic

speed for the four downstream sites at the same past times.

Table 4.1 presents a summary of the 36 datasets that include the number of

instances, the number of attributes, the number of instances per class and the

Imbalance Ratios (IRs) of each dataset. The IR is calculated by dividing the

number of instances of the majority class over the instances of each of all

the other classes. IR values show that the generated datasets have a different

imbalance degree. Some datasets do not contain all the possible classes be-

cause, on some occasions, some of the classes had a low presence (e.g., 20

samples), which introduces noise in the results. In such cases, the underrep-

resented classes were tagged as classes of the closest label with the lowest

number of samples.

Moreover, the differences between freeway and urban datasets of Type I and

Type II are their class distributions. Within each Type, the class distribution

is the same for all time horizons. In this sense, we can explore the capacity

of Auto-sklearn when approaching different degrees of imbalanced data.

Experimental set-up

In this section, we present the experimental set-up proposed to test the performance

of Auto-WEKA and Auto-sklearn. Explicitly, we define a set of performance met-

rics and statistical tests that are commonly used in the design of experiments in

computational intelligence and data mining [55, 208, 209]. We also specify the

ETs of the AutoML methods and present the ML competitors that are well-known

methods in TF literature [9].

Experimental set-up for Auto-WEKA

• Metrics: We evaluated the performance of the AutoML method and the BAs

using the metric Root-Mean-Square Error (RMSE). It is applied for regres-

sion problems to measure the average magnitude of the error between the

predictions of a learning model and the actual values extracted from the raw
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Table 4.1: Freeway and urban datasets

Type Datasets # Instances # Attributes # Instances per class Imbalance ratios

Type I
Fw T+CD in time horizons of

5, 15, 30, 45, 60 minutes
[10927 - 9906] 13

A = 4533, B = 3640
C = 893, D = 850

IR (A/D) = 5,07
IR (A/B) = 1,24
IR (A/C) = 5,33

Fw TS+CD in time horizons of
5, 15, 30, 45, 60 minutes

[10927 - 9906] 28
A = 5983, B = 4580,

C = 363
IR (A/B) = 1,30

IR (A/C) = 16,48

Type II
Fw T+CD in time horizons of

5, 15, 30, 45, 60 minutes
[10927 - 9906] 13

A = 4533, B = 4023,
C = 136

IR (A/B) = 1,12
IR (A/C) = 3,33

Fw TS+CD in time horizons of
5, 15, 30, 45, 60 minutes

[10927 - 9906] 28
B = 7782, C = 2125,

A = 101
IR (B/C) = 3,66
IR (B/A) = 7,63

Type I
Ub T+CD in time horizons of

15, 30, 45, 60 minutes
[2684-2634] 13

A = 1337, B = 1188,
C = 111

IR (A/B) = 1,12
IR (A/C) = 12,04

Ub TS+CD in time horizons of
15, 30, 45, 60 minutes

[2684-2634] 28
B = 1659, A = 691,

C = 33
IR (B/A) = 2,40

IR (B/C) = 4

Type II
Ub T+CD in time horizons of

15, 30, 45, 60 minutes
[2684-2634] 13

A = 1337
B = 1299

IR (A/B) = 1,02

Ub TS+CD in time horizons of
15, 30, 45, 60 minutes

[2684-2634] 28
B = 1561
A = 1122

IR (B/A) = 1,39

data [210]. Its calculation is expressed as RMSE =
√

1
n

∑n
i=1 (yi − yi)2

wherein n corresponds to the number of samples in the dataset.

• Competitors and Baseline: Here we compare the AutoML method versus

the general approach in TF, which consists of selecting the best of a set of

commonly used ML algorithms. Concretely, we contrast Auto-WEKA re-

sults with four state-of-the-art ML algorithms (NN, SVM, kNN, and RF) in

the task of forecasting traffic speed [5, 9]. The latter methods are named

Base Algorithms (BAs). For the experimentation with Auto-WEKA, three

Execution Times (ETs) were considered: 15, 150, and 300 minutes. They

correspond to the time that the method takes to find the best ML algorithm

and its hyperparameter configuration for a given dataset. The assumption

about ETs is that longer time budgets lead to better results; therefore, ETs

under a progressive increase should exemplify this, such as is stated in [20].

Furthermore, five repetitions with different initial seeds were carried out for

each ET.
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The process of evaluating every BA over a dataset was done with five rep-

etitions with different initial seeds and using their default hyperparameter

setting. We have not performed any optimisation or extra-adjustment of the

BAs’ hyperparameters because we aim to compare the performance of Au-

toML versus BAs using the same human effort for both of them to make a

fairer comparison. Besides, to assess the performance of Auto-WEKA and

the BAs, the datasets are partitioned in training (70%) and test (30%).

• Statistical tests: We made use of non-parametric statistical tests to assess

the differences in the performance of the methods. Two statistical analyses

are used following the guidelines proposed in [208]. First, Friedman’s test

for multiple comparisons is applied to check whether there are differences

among the methods. Then, the Holm’s test is used to check whether the

variations of the Friedman ranking are statistically significant or not.

Experimental set-up for Auto-sklearn

• Metrics: To evaluate the experimental set-up presented, we use the metric G-

measure (mGM) that is applied for multi-class imbalanced data in classifica-

tion problems [211]. Its calculation is expressed asmGM = M

√∏M
i=1 specificityi · recalli

where M is the total number of classes.

• Competitors and Baseline: Unlike Auto-WEKA whose search strategy is

only composed of optimisation, in this case, we explore the performance of

the components that constitute the hybrid search strategy of Auto-sklearn

through the following scenarios.

– A default scenario in which the search strategy of the AutoML method

uses its three components. In this case, we considered three ET for

Auto-sklearn (15, 60 and 120 minutes) where meta-learning should en-

hance the efficiency of Bayesian optimisation by taking less time to

find competitive pipelines [1]. For assessing the performance of this

scenario, the datasets are partitioned in training (80%) and test (20%).
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– The recommendations done via meta-learning and pipelines of the knowl-

edge base are combined in two ensembles based on weighted-voting

without using the optimisation component. First, we extract the 25

ML pipelines (default value used by Auto-sklearn) suggested by the

meta-learning part, which then are combined in the weighted-voting

ensemble named MetaEns25. To test the latter ensemble, the datasets

are partitioned in the same way as was described above. For the sec-

ond ensemble, we extract the complete list of 121 ML pipelines of the

knowledge base of the meta-learning component and choose again 25

best pipelines, based on their validation error, to generate the ensem-

ble MetaEn25-121. In this case, we do the following procedure: the

datasets are partitioned in training (60%), validation (20%) and test

(20%). To select the 25 best pipelines, the 121 recommendations are

trained on the training set, and their performance is assessed on the

validation set. Then the ensemble is built with the 25 pipelines that

have the best validation error. Finally, the ensemble is trained on train-

ing+validation partitions (same number of instances as previous strate-

gies, that is, 80%) and assessed on the test set.

– We consider the knowledge base of the meta-learning component in iso-

lation. We follow a similar approach to that of MetaEn25-121, that is,

we extract the 121 of the knowledge base and split the datasets in train-

ing (60%), validation (20%) and test (20%). This means that for every

dataset, we train the 121 pipelines of the knowledge base on the train-

ing set and based on their validation error, we choose the best pipeline.

The latter is then trained on training+validation (that is, over an 80% of

the instances) and assessed over the test set.

• Statistical tests: We made use of the same non-parametric statistical tests

defined for the experimentation with Auto-WEKA.
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4.3 Results and Analysis
This section presents the results obtained by Auto-WEKA and Auto-sklearn when

making traffic predictions for the families of problems selected.

Auto-WEKA results

This section analyses the results obtained from different angles. Specifically, our

aims are:

• To compare the competitiveness and the significance of Auto-WEKA per-

formance with respect to BA competitors in supervised regression problems

such as TF.

• To investigate the main benefits and drawbacks of AutoML purely based on

optimisation when dealing with supervised regression problems such as TF.

Table 4.2 shows the mean and standard deviation (between brackets) of the

RMSE values obtained by both Auto-WEKA and the BAs overall repetitions

for each dataset. RMSE values in bold indicate the best result in every dataset

achieved by any of the BAs or the Auto-WEKA’s execution times.

Observing Table 4.2, we can point out the following results:

• Auto-WEKA performs better than the BAs along with eight datasets. In all

the other cases, RF or NN obtain better results than Auto-WEKA although

with small improvements ranging from 0.01 to 1.31 in the RMSE values.

These results are interesting because to get the conclusion that RF and NN are

the best BAs in those cases, the transportation user should run all BAs over

all datasets and compare their performance among them, which is a time-

consuming task. Contrary, running Auto-WEKA only once and therefore

employing less human effort, the user can achieve similar or better results

than those obtained with the best BAs.

• Regarding datasets characteristics, we can see that they do influence the dif-

ferences between results of Auto-WEKA and BAs. Concretely, for all urban
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Table 4.2: Mean RMSE values and their standard deviations (in brackets) obtained
by the Auto-WEKA and the BAs

Datasets
Auto-WEKA Base Algorithms

15mET 150mET 300mET kNN NN RF SVM
Fw T+CD 5m 5 2.87 (0.08) 2.87 (0.08) 2.91 (0.06) 4.25 (0.14) 2.93 (0.20) 2.86 (0.06) 2.90 (0.09)

Fw T+CD 5m 15 5.81 (0.33) 5.80 (0.28) 5.82 (0.34) 6.66 (0.22) 5.90 (0.45) 5.16 (0.19) 5.68 (0.18)
Fw T+CD 5m 30 7.35 (0.85) 6.76 (0.41) 6.99 (0.68) 8.30 (0.39) 9.05 (1.59) 7.06 (0.13) 8.19 (0.23)
Fw T+CD 5m 45 8.30 (1.09) 7.83 (1.12) 8.53 (0.30) 8.72 (0.20) 10.26 (1.15) 7.70 (0.25) 9.65 (0.17)
Fw T+CD 5m 60 9.12 (1.87) 9.01 (1.67) 9.61 (1.70) 9.01 (0.26) 10.90 (0.74) 7.99 (0.08) 10.56 (0.09)
Fw TS+CD 5m 5 1.19 (0.05) 1.16 (0.01) 1.17 (0.03) 1.46 (0.03) 1.44 (0.29) 1.13 (0.05) 1.11 (0.03)

Fw TS+CD 5m 15 1.92 (0.00) 2.00 (0.47) 2.01 (0.55) 1.78 (0.06) 2.16 (0.24) 1.64 (0.03) 1.86 (0.05)
Fw TS+CD 5m 30 2.12 (0.37) 2.37 (0.47) 1.90 (0.41) 1.95 (0.13) 2.60 (0.26) 1.91 (0.08) 2.43 (0.05)
Fw TS+CD 5m 45 2.50 (0.48) 2.33 (0.49) 2.14 (0.49) 2.05 (0.09) 2.92 (0.24) 2.06 (0.07) 2.82 (0.05)
Fw TS+CD 5m 60 3.17 (0.63) 2.82 (0.69) 2.26 (0.49) 2.16 (0.09) 2.89 (0.15) 2.16 (0.12) 3.10 (0.11)
Ub T+CD 15m 15 5.62 (0.15) 5.76 (0.26) 5.71 (0.36) 7.74 (0.40) 7.68 (1.27) 5.77 (0.03) 6.05 (0.11)
Ub T+CD 15m 30 5.71 (0.29) 5.97 (0.57) 5.74 (0.35) 8.20 (0.37) 8.02 (1.03) 5.80 (0.23) 6.33 (0.25)
Ub T+CD 15m 45 5.68 (0.14) 5.73 (0.15) 5.65 (0.03) 8.45 (0.20) 8.25 (1.88) 6.16 (0.26) 6.80 (0.37)
Ub T+CD 15m 60 5.91 (0.12) 5.85 (0.13) 5.88 (0.25) 8.52 (0.60) 7.25 (0.70) 5.98 (0.42) 7.05 (0.42)

Ub TS+CD 15m 15 8.97 (0.46) 8.84 (0.38) 8.83 (0.18) 10.42 (0.72) 14.81 (0.93) 7.92 (0.30) 8.45 (0.35)
Ub TS+CD 15m 30 7.91 (0.23) 7.80 (0.17) 7.61 (0.23) 12.95 (0.80) 17.18 (1.82) 9.34 (0.53) 10.75 (0.66)
Ub TS+CD 15m 45 9.89 (0.18) 9.56 (0.23) 9.54 (0.24) 13.96 (0.79) 19.02 (2.94) 9.74 (0.51) 11.53 (0.41)
Ub TS+CD 15m 60 9.25 (0.09) 9.07 (0.24) 8.94 (0.11) 13.07 (0.52) 17.09 (0.96) 9.77 (0.91) 11.94 (0.84)

datasets with a granularity of 15 minutes (except for the dataset Ub TS+CD -

15m 15), the AutoML method obtains the best RMSE values. On the other
hand, RA works exceptionally well on freeway datasets with the shortest
and most prolonged time horizons; the latter excluding Fw T+CD 5m 30

and Fw TS+CD 5m 30 datasets in which Auto-WEKA gets the bestRMSE

performance.

• Another interesting aspect is the relation between the execution time and
the performance of the models provided by Auto-WEKA. Longer execution
times contribute to obtaining better results, mainly, in urban datasets with
longer time horizons. In the case of freeway datasets where RF and NN

algorithms are the best ones, the results improve when the Auto-WEKA’s
execution time increases from 15 to 150 minutes, but they are worse when we
pass from 150 to 300 minutes. We observed that this worsening is due to the
overfitting produced by the hyperparameters selected by Auto-WEKA. This
result indicates that it is necessary to introduce mechanisms in the AutoML
method to deal with overfitting, especially when execution times are high.
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To assess whether the differences in performance observed in Table 4.2 are sig-

nificant or not, we made use of non-parametric statistical tests. First, Friedman’s

test for multiple comparisons has been applied to check whether there are sub-

stantial differences among the three execution times of Auto-WEKA. Given that

the p-value returned by this test is 0.35, the null hypothesis cannot be rejected.

Therefore, there are no significant statistical differences between the three execu-

tion times of Auto-WEKA. This result challenges the assumption of optimisation

within AutoML in a sense that longer execution times do not strictly lead to better

performance.

Table 4.3: Friedman’s average ranking and adjusted p-values for Auto-WEKA ETs

Auto-WEKA mET Avg. Ranking Adj. p-values
300mET 1.8333 -
150mET 1.8611 0.9335
15mET 2.3056 0.3131

To assess if the differences observed between Auto-WEKA and the BAs are sig-

nificant or not, we also used Friedman’s non-parametric test. For this comparison

we selected 300mET as representative approach of Auto-WEKA for being in the

first position of the ranking in Table 4.2, although without significant differences

against 150mET and 15mET.

Considering that the p-value returned by Friedman’s test was 0, the null hypoth-

esis can be rejected. The mean ranking returned by the test is displayed in Table

4.4, showing a better global result of RF against the others BAs. At the same time,

Table 4.4 also exposes the better global results of the AutoML method versus kNN,

NN and SVM.

Holm post-hoc test has also been applied using RF as control algorithm (be-

cause it was the method with the lowest ranking) to assess the significance of the

differences in performance concerning the other methods. Table 4.4 presents the

adjusted p-values returned by this test. To highlight significant differences, those

p-values lower than 0.05 are shown in bold. Looking at Table 4.4, there are impor-

tant differences in the test’s outcomes. It can be said that RF results improve the

rest of BAs significantly, but not the 300mET of Auto-WEKA.
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Table 4.4: Friedman’s average ranking and adjusted p-Values obtained through Holm
post-hoc test using RF as control algorithm

Algorithms Avg. Ranking Adj. p-values
RF 1.6111 -

Auto-WEKA (300mET) 2 0.4605
SVM 3.0556 0.0122
kNN 3.7778 0.0001
NN 4.5556 0

Auto-sklearn results

This section analyses the results obtained by Auto-sklearn from different perspec-

tives. Specifically, our aims are:

• To compare the competitiveness and the significance of AutoML based on

meta-learning and optimisation in supervised classification problems such as

TF.

• To investigate the strengths and weaknesses of AutoML based on a search

strategy composed of meta-learning and optimisation when dealing with su-

pervised classification problems such as TF.

Table 4.5 shows the mean mGM values obtained by the three ET of Auto-

sklearn (AutoS ET), the two voting ensembles (MetaEns25 and MetaEn25-121)

and the best pipeline in the validation stage from the knowledge base of the meta-

learning component (BestPipe Val). mGM values in bold indicate the best result

achieved in every dataset. Besides, the last column of Table 4.5 shows what is the

winner approach in terms of performance on each dataset.

In the cases wherein theBestP ipe V al approach obtains the best performance,

we indicate the following information in two pairs of brackets. The first pair indi-

cates the ranking position of the winner pipeline (according to the similarity metric

used by Auto-sklearn) and the difference between the metric value of this pipeline

and the metric value of the pipeline located in the first position of the ranking. The
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second tuple between brackets shows the metric values for the pipelines in posi-

tions 1, 25 and 121 of the ranking. In the latter case, we can observe whether there

is a positive correlation between the ranking positions and the actual performance

of the pipelines. The assumption of Auto-sklearn is that pipelines closer to position

1 (distances near 0) are likely to perform better on the input data.

Table 4.5: Mean mGM valuesand their standard deviations (in brackets) obtained
by the three Auto-sklearn’s ET, two weighted-voting ensembles and the BestPipe Val
approach

Type Data-set BestPipe Val MetaEn25 MetaEn25-121 AutoS 15ET AutoS 60ET AutoS 120ET Winner

Fr
ee

w
ay

Ty
pe

I

T+CD 5 0.70 (0.00) 0.67 (0.00) 0.67 (0.00) 0.67 (0.01) 0.68 (0.01) 0.67 (0.01) (Pipe 5, 2.4) - (0.9, 2.0, 11.6)
T+CD 15 0.48 (0.01) 0.41 (0.01) 0.43 (0.01) 0.32 (0.01) 0.35 (0.02) 0.34 (0.01) (Pipe 114, 5.2) - (0.9, 2.0, 11.6)
T+CD 30 0.29 (0.00) 0.24 (0.01) 0.25 (0.01) 0.22 (0.01) 0.22 (0.01) 0.22 (0.02) (Pipe 114, 5.2) - (0.9, 2.0, 11.6)
T+CD 45 0.85 (0.01) 0.17 (0.01) 0.15 (0.00) 0.17 (0.01) 0.16 (0.01) 0.18 (0.00) (Pipe 67, 2.8) - (0.8, 2.0, 11.6)
T+CD 60 0.84 (0.00) 0.18 (0.01) 0.18 (0.01) 0.19 (0.01) 0.19 (0.00) 0.19 (0.01) (Pipe 67, 2.8) - (0.8, 2.0, 11.6)
TS+CD 5 0.71 (0.00) 0.70 (0.00) 0.70 (0.00) 0.54 (0.04) 0.60 (0.05) 0.61 (0.08) (Pipe 72, 2.8) - (1.1, 1.9, 11.1)
TS+CD 15 0.50 (0.01) 0.47 (0.01) 0.48 (0.01) 0.36 (0.03) 0.26 (0.14) 0.31 (0.08) (Pipe 67, 2.7) - (1.1, 1.9, 11.1)
TS+CD 30 0.45 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) (Pipe 72, 3.2) - (1.6, 1.9, 11.1)
TS+CD 45 0.35 (0.00) 0.00 (0.00) 0.17 (0.30) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) (Pipe 72, 3.2) - (1.6, 1.9, 11.1)
TS+CD 60 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -

Fr
ee

w
ay

Ty
pe

II

T+CD 5 0.97 (0.00) 0.87 (0.00) 0.88 (0.00) 0.87 (0.00) 0.88 (0.00) 0.88 (0.00) (Pipe 77, 3.0) - (1.2, 1.8, 11.5)
T+CD 15 0.96 (0.00) 0.76 (0.00) 0.76 (0.00) 0.75 (0.01) 0.75 (0.01) 0.76 (0.01) (Pipe 23, 1-8) - (1.2, 1.8, 11.5)
T+CD 30 0.94 (0.00) 0.66 (0.00) 0.66 (0.00) 0.67 (0.00) 0.67 (0.01) 0.67 (0.01) (Pipe 58, 2.4) - (1.2, 1.8, 11.5)
T+CD 45 0.60 (0.00) 0.61 (0.00) 0.61 (0.00) 0.60 (0.00) 0.61 (0.00) 0.61 (0.00) MetaEns25-121
T+CD 60 0.56 (0.00) 0.57 (0.00) 0.57 (0.00) 0.58 (0.00) 0.58 (0.00) 0.57 (0.00) AutoS 15ET
TS+CD 5 0.91 (0.00) 0.65 (0.00) 0.66 (0.01) 0.66 (0.01) 0.65 (0.02) 0.65 (0.01) (Pipe 2, 1.0) - (0.9, 1.9, 10.9)
TS+CD 15 0.47 (0.00) 0.41 (0.00) 0.42 (0.00) 0.41 (0.03) 0.42 (0.01) 0.42 (0.02) (Pipe 41, 2.2) - (0.9, 1.9, 11.0)
TS+CD 30 0.46 (0.00) 0.31 (0.00) 0.34 (0.00) 0.32 (0.02) 0.32 (0.01) 0.31 (0.02) (Pipe 84, 3.5) - (0.9, 1.9, 11.0)
TS+CD 45 0.44 (0.00) 0.25 (0.00) 0.39 (0.25) 0.27 (0.01) 0.28 (0.03) 0.29 (0.01) (Pipe 84, 3.4) - (0.9, 1.9, 11.0)
TS+CD 60 0.41 (0.00) 0.22 (0.00) 0.23 (0.01) 0.27 (0.02) 0.25 (0.02) 0.27 (0.02) (Pipe 83, 3.4) - (0.9, 1.9, 11.0)

U
rb

an
Ty

pe
I

T+CD 15 0.78 (0.03) 0.24 (0.00) 0.24 (0.00) 0.32 (0.17) 0.33 (0.11) 0.35 (0.07) (Pipe 4, 1.3) - (0.8, 2.0, 11.7)
T+CD 30 0.70 (0.00) 0.15 (0.02) 0.20 (0.02) 0.25 (0.09) 0.15 (0.14) 0.12 (0.10) (Pipe 85, 3.3) - (0.8, 2.0, 11.7)
T+CD 45 0.71 (0.01) 0.12 (0.07) 0.18 (0.02) 0.30 (0.05) 0.29 (0.06) 0.21 (0.05) (Pipe 101, 4-1) - (0.9, 2.0, 11.7)
T+CD 60 0.40 (0.03) 0.19 (0.00) 0.21 (0.02) 0.23 (0.06) 0.27 (0.06) 0.26 (0.02) (Pipe 108, 4.3) - (0.9, 2.0, 11.7)
TS+CD 15 0.88 (0.01) 0.54 (0.00) 0.55 (0.01) 0.56 (0.03) 0.54 (0.01) 0.53 (0.02) (Pipe 107, 4.3) - (1.1. 1.9, 11.9)
TS+CD 30 0.67 (0.01) 0.50 (0.01) 0.53 (0.02) 0.56 (0.03) 0.58 (0.04) 0.54 (0.05) (Pipe 94, 3.7) - (1.1, 1.9, 11.8)
TS+CD 45 0.69 (0.01) 0.47 (0.00) 0.51 (0.01) 0.56 (0.02) 0.57 (0.02) 0.56 (0.01) (Pipe 98, 4.0) - (1.1, 1.9, 11.8)
TS+CD 60 0.70 (0.00) 0.50 (0.00) 0.54 (0.01) 0.57 (0.02) 0.61 (0.04) 0.58 (0.03) (Pipe 73, 2.8) - (1.1, 1.9, 11.9)

U
rb

an
Ty

pe
II

T+CD 15 0.91 (0.01) 0.69 (0.01) 0.69 (0.01) 0.69 (0.00) 0.69 (0.01) 0.68 (0.01) (Pipe 1, 0.3) - (0.3, 1.3, 12.6)
T+CD 30 0.92 (0.01) 0.66 (0.00) 0.68 (0.01) 0.68 (0.01) 0.68 (0.01) 0.69 (0.01) (Pipe 48, 2.4) - (0.3, 1.3, 12.6)
T+CD 45 0.79 (0.01) 0.69 (0.00) 0.70 (0.01) 0.69 (0.0) 0.69 (0.01) 0.68 (0.01) (Pipe 39, 1.9) - (0.3, 1.3, 12.6)
T+CD 60 0.89 (0.00) 0.68 (0.00) 0.68 (0.01) 0.69 (0.013) 0.69 (0.00) 0.70 (0.01) (Pipe 18, 1.0) - (0.3, 1.3, 12.6)
TS+CD 15 0.92 (0.00) 0.66 (0.00) 0.66 (0.00) 0.66 (0.00) 0.67 (0.01) 0.67 (0.01) (Pipe 109, 5.0) - (0.5, 1.2, 12.3)
TS+CD 30 0.91 (0.00) 0.64 (0.01) 0.64 (0.01) 0.62 (0.00) 0.64 (0.01) 0.64 (0.01) (Pipe 109, 5.1) - (0.6, 1.2, 12.4)
TS+CD 45 0.90 (0.01) 0.64 (0.01) 0.63 (0.01) 0.62 (0.01) 0.62 (0.15) 0.64 (0.01) (Pipe 109, 5.1) - (0.6, 1.2, 12.4)
TS+CD 60 0.92 (0.00) 0.67 (0.01) 0.70 (0.01) 0.63 (0.01) 0.65 (0.03) 0.68 (0.02) (Pipe 2, 0.6) - (0.6, 1.2, 12.4)

Observing Table 4.5, we can point out the following results:

• The BestPipe Val component is by far the best performing approach when

making traffic predictions. Concretely, it can suggest the best pipeline in 33
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out of 36 datasets, performing even better than the longer ET (120 minutes)

of Auto-sklearn when it considers its complete search strategy.

• If we check carefully the winner pipelines in the last column of Table 4.5,

only in 5 cases (datasets: Fw TS+CD 5 - Type II, Ub T+CD 15 - Type I,

Ub T+CD 15 - Type II, Ub T+CD 60 - Type II, Ub TS+CD 60 - Type II)

the pipelines are located in a position lower than 25. As it was stated before,

25 is the default value that Auto-sklearn uses to recommend the 25 pipelines

that are more likely to perform well on the input data. Such recommendation

is made by the similarity metric that compares the meta-features of the input

datasets against the meta-features stored in the meta-knowledge base. Con-

sidering such comparison, the similarity metric chooses the best pipelines,

found in the offline Auto-sklearn’s phase, for the 25 most similar datasets

with respect to the input data.

• The meta-features used for the comparison are not working correctly, and

they are providing information to the similarity metric that makes it leav-

ing out competitive pipelines located beyond position 25. In conclusion, the

majority of pipelines in the column winner of Table 4.5 are associated to

datasets, that with the current Auto-sklearn’s meta-features comparison, are

no being categorised as similar with regard to the TF datasets.

• For the default scenario in which Auto-sklearn uses its three components,

longer ET are supposed to improve the final results of predictions. However,

the improvements only rank approximately from 0.01 to 0.07 in the best of

the cases (e.g., Fw TS+CD 5 - Type I). This could be because the meta-

learning component is suggesting low-performance pipelines for the warm-

start process of the optimisation component. Opposite to this tendency are

datasets Fw TS+CD 15 - Type I, Fw T+CD 15 - Type II and Ub TS+CD 15

- Type I wherein the best mGM value is found by ET shorter than 120 min-

utes. We observed that this worsening is due to the overfitting produced by

the hyperparameters tuning of Auto-sklearn on the recommended pipelines.

Therefore, it is also necessary to introduce mechanisms in the hybrid search
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4. GENERAL-PURPOSE AUTOML IN TRAFFIC FORECASTING

strategy of AutoML to deal with overfitting, especially when execution times

of the optimisation are high.

• Regarding the performance of the two ensembles approaches based on weighted-

voting (MetaEns25 and MetaEns25-121), the results of MetaEns25-121 are

quite similar with respecto to the results obtained when the optimisation com-

ponent is taken into account. Concretely, in datasets of freeway Types I-II and

urban Type II, MetaEns25-121 outperforms Auto-sklearn in multiple cases.

Particularly, in datasets Fw TS+CD 45 - Type II, Fw TS+CD 45- Type I and

Fw TS+CD 5 - Type I the performance of MetaEns25-121 is better than any

of the Auto-sklearn’s ET. This can be explained because this ensemble is

built using already optimised pipelines located beyond position 25 of the

ranking. As it was stated before, in those positions are competitive pipelines

whose performance is boosted by the ensemble without the need of doing

optimisation.

• In the case of datasets freeway Types I-II and urban Type I, as the time hori-

zon of predictions increases, the performance of all approaches decreases.

For these datasets, the ones that have a time horizon of five minutes are the TF

problems in which the six methods perform better. Besides, in datasets Fw -

TS+CD 30 and Fw TS+CD 60, almost all Auto-sklearn components have

problems predicting the minorities classes, and therefore their mGM values

in these cases are equal to zero.

• Regarding urban datasets of Type I with only temporal traffic data (T), the

three ET of Auto-sklearn and the two ensembles have the lowest perfor-

mance. This is because these datasets have the highest IRs (IR(A/B) = 1.12

IR(A/C) = 12.04). The latter demonstrates that Auto-sklearn does not in-

corporate in its inner structure mechanisms to deal with high imbalanced

classification datasets. Meanwhile, in the case of urban datasets of Type I

with spatial and temporal data (TS) and all urban datasets of Type II, the per-

formance of the six approaches is quite acceptable and homogeneous across

them. This behaviour can be argued as these 12 datasets are the most bal-
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Table 4.6: Execution times in minutes of the BestPipe Val approach and the two
weighted voting ensembles. Values in bold indicates an execution time that is between
60 and 120 minutes which are the two longer execution times of Auto-sklearn

Type Datasets BestPipe Val MetaEns25 MetaEns25-121 Type BestPipe Val MetaEns25 MetaEns25-121

Fr
ee

w
ay

Ty
pe

I

T+CD 5 9 1 6

Fr
ee

w
ay

Ty
pe

II

9 1 5
T+CD 15 90 25 76 80 17 52
T+CD 30 86 26 77 83 18 45
T+CD 45 8 2 10 8 1 9
T+CD 60 8 1 10 8 1 6
TS+CD 5 33 4 22 129 25 22

TS+CD 15 38 4 23 31 8 23
TS+CD 30 36 7 30 35 5 38
TS+CD 45 39 7 23 37 6 28
TS+CD 60 40 7 22 37 5 5

U
rb

an
Ty

pe
I

T+CD 15 11 7 13

U
rb

an
Ty

pe
II

10 2 7
T+CD 30 15 7 12 7 3 7
T+CD 45 16 2 9 9 2 6
T+CD 60 16 2 12 7 2 6

TS+CD 15 46 7 43 38 15 20
TS+CD 30 46 7 43 40 16 24
TS+CD 45 47 7 30 38 15 27
TS+CD 60 46 7 28 35 17 22

anced of the 36 datasets (IR(B/A) = 2.40, IR(B/C) = 4.98; IR(A/B) = 1.02,

IR(B/A) = 1.39).

As the computational cost is a crucial factor in AutoML, Table 4.6 shows the

execution times in minutes that the BestPipe Val and the two meta-ensembles took

to make predictions on every dataset. As can be seen, in the majority of the cases,

the three approaches spent less than 60 minutes, which is the second longer ET of

Auto-sklearn considering its three components.

Lastly, to evaluate if the differences in performance observed in Table 4.5 are

significant or not, we used the same non-parametric statistical tests considered for

Auto-sklearn results. In this case, the tests are not carried out for the 36 datasets at

the same. Instead, the datasets are grouped according to their types; this means that

freeway and urban datasets of Type I are considered together and the same occurs

for datasets of Type II.

First, Friedman’s test was applied to check whether there are significant differ-

ences among the three execution times of Auto-sklearn. Given that the p-values

returned by this test are 0.5134 and 0.2391 for datasets of Type I and Type II, re-
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spectively, the null hypothesis cannot be rejected in any of the two cases. In this

sense, there is no substantial evidence to corroborate that longer ET for the optimi-

sation component integrated with meta-learning can guarantee higher performance.

Table 4.7: Friedman’s average ranking for Auto-sklearn ET and adjusted p-Values
obtained through Holm post-hoc test using AutoS 60ET and AutoS 120ET as control
algorithms

Fw and Ub datasets Type I Fw and Ub datasets Type II
Auto-sklearn ET Avg. Ranking Auto-sklearn ET Avg. Ranking

AutoS 60ET 1.7778 AutoS 120ET 1.75
AutoS 15ET 2.1111 AutoS 60ET 1.9444

AutoS 120ET 2.1111 Auto 15ET 2.3056

Next, we evaluate whether the differences in performance of Auto-sklearn and

the other approaches in Table 4.5. For this comparison we choose AutoS 60ET

and AutoS 120ET as representative approaches of Auto-sklearn in datasets of Type

I and Type II, respectively. This decision is based on the fact that, although without

significance differences, they are the approaches in the first positions of Friedman’s

rankings in Table 4.7.

Table 4.8: Friedman’s average ranking and Adjusted p-Values obtained through Holm
post-hoc test using RF as control algorithm

Fw and Ub datasets Type I Fw and Ub datasets Type II
Method Avg. Ranking Adj. p-values Method Avg. Ranking Adj. p-values

BestPipe Val 1.0833 - BestPipe Val 1.3333 -
MetaEns25-121 2.75 0.0001 MetaEns25-121 2.6667 0.0031

AutoS 60ET 2.8333 0.000095 AutoS 120ET 2.6944 0.0031
MetaEns25 3.3333 0.000001 MetaEns25 3.3056 0.000014

Considering the p-values returned by this test are 0.000001 and 0.000053 for

datasets of Type I and Type II, respectively, the null hypothesis can be rejected in

both cases. The mean rankings returned by the test are displayed in Table 4.8 and

p-values lower than 0.05 are shown in bold. It can be confirmed BestP ipe V al as

the best approach against the two ensembles and the best Auto-sklearn ETs.

96



4.4 Conclusions

4.4 Conclusions
In this chapter, we focused on deepening into the strengths and drawbacks that
general-purpose AutoML faces when dealing with supervised learning problems
such as TF. To accomplish such purpose, we have done two independent studies of
AutoML in regression and classification TF problems. First, we test Auto-WEKA
(AutoML method based on a pure optimisation search strategy) on TF supervised
regression problems wherein the target was predicting traffic speed. Later on, we
assessed Auto-sklearn (AutoML method that uses a meta-learning and optimisa-
tion ) in TF supervised classification problem to forecast LoS. For both cases, the
data used was traffic speed collected by loop detectors within urban and freeway
environments. Besides, the scales of predictions were focused on point and road
segment levels along multiple time horizons.

Regarding a general comparison among Auto-WEKA and Auto-sklearn, both
AutoML methods have issues dealing with high-imbalanced TF datasets. There-
fore, current analyses and mechanisms already available in ML literature [52, 212]
to address imbalanced data still need to be systematised and incorporated into the
AutoML workflow. Besides, Auto-sklearn and Auto-WEKA also have difficulties
with the time horizon of predictions. As the horizon increases, the performance
of the methods tends to fall. The latter is a crucial issue within the transporta-
tion domain to be improved because policy-makers require information about the
evolution of traffic over the short- and long-term to improve the management of
traffic.

Concerning individual analysis carried out for Auto-WEKA and Auto-sklearn,
we drew the following conclusions:

• AutoML based on pure optimisation: with a lower human effort, the trans-
portation user can expect similar or even better results than the best BA. The
latter is interesting because to figure out what the best ML methods are, the
user should carry out thorough experimentation to determine the best per-
forming algorithm and the most suitable configuration of hyperparameters.
This is achieved using the optimisation search strategy whose focus is on
generating, fine-tuning, and evaluating individual pipelines. However, we
identified some drawbacks of this approach:
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– the optimisation approach is a demanding process because it involves
complex search spaces and, therefore, the evaluation of the objective
function usually is computationally expensive.

– to establish a priori the best time budget for the optimisation process is a
difficult task. As it was shown, longer execution times allocated for the
search of ML models do not always imply higher final performance in
specific supervised learning tasks such as TF. In big or complex datasets
collecting good pipelines can require a long time, and the scalability of
AutoML could come at a high computational cost. In contrast, in small
or more straightforward datasets an excessive time budget is prone to
overfitting.

• AutoML based on meta-learning and optimisation: although AutoML
that combines meta-learning with optimisation can reduce the impact of the
issues mentioned above, we identified the following drawbacks:

– the definition of a set of meta-features able to characterise very diverse
datasets and to predict pipelines’ performance is a difficult task without
substantial evidence to guide this design process. There is a risk that in
very different supervised learning tasks to those included in the meta-
knowledge base, for instance, TF as in this case, the meta-learning com-
ponent may suggest pipelines that are not competitive to warm-start the
optimisation process. The latter can cause a worsening in performance
of the AutoML method.

The in-depth analyses of general-purpose AutoML based on optimisation and
meta-learning with optimisation have allowed us to identify a set of strengths and
weaknesses of AutoML when dealing with very diverse supervised learning prob-
lems such as TF. The knowledge extracted from the experimentation carried out
guides us to improve general-purpose AutoML, which can also benefit its perfor-
mance in supervised TF problems. Thus, in the following chapter, we introduce
AutoEn. It is a new and novel AutoML method that overcomes some of the most
common drawbacks mentioned above in supervised general-purpose and TF prob-
lems.
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We can only see a short distance
ahead, but we can see plenty there
that needs to be done.

Alan Turing

CHAPTER

5
AutoEn: a new AutoML

method for supervised
learning problems

5.1 Introduction
As it was presented in previous chapters, the core of existing AutoML methods is

the optimisation of individual ML pipelines. The optimisation approach could be

enhanced with a preliminary stage based on meta-learning. Specifically, the learn-

ing approach is in charge of systematically observing how different ML pipelines

perform on a wide range of learning tasks to take advantage of this experience.

Thus, when new input data comes in, meta-learning recommends competitive pipelines

based on previous experience that are used then as a warm-start of the optimisation

process.

However, as it was observed in Chapter 4, current AutoML approaches suffer

from some issues that motivate the design of new AutoML methods to overcome

such limitations. In the first place, longer execution times for the optimisation of

pipelines may cause overfitting. Besides, sometimes for medium- and small-size

datasets, competitive pipelines can be quickly found without the need of allocating
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long time budgets for the optimisation search. Thus, the optimisation of pipelines

can be an expensive procedure when the goal is to make good enough predictions.

In the second place, as the size of input data grows, it is harder to generate, tune and

test multiple pipelines because the evaluation of the objective function becomes ex-

pensive. Therefore, the number of candidate pipelines built during the optimisation

could decrease, and it ends up affecting the performance of the final solutions.

Finally, the third issue identified in Chapter 4 about current AutoML methods

is related with meta-learning. This learning approach has arisen as a promising

strategy to deal with the two optimisation issues mentioned above. However, there

is a risk that for supervised learning tasks not similar to the ones stored in the meta-

knowledge base, meta-learning could recommend pipelines that do not perform

as well as expected in specific supervised problems such as TF. Therefore, the

optimisation process could be warm-started with pipelines that are not competitive

on the input data.

Having in mind the motivations presented above, we want to conceive a com-

petitive and straightforward AutoML method that adjusts to the complexity of the

data without the need to define a time budget for its execution. This means that

for small- and medium-size datasets, the method can find quick solutions; alter-

natively, for large datasets, the method may take a longer time to find competitive

pipelines. The condition mentioned above could be satisfied not only suggesting

single pipelines whose performance could vary drastically from one learning task

to another. In this sense, we propose AutoEn, a new AutoML method based on the

search and optimisation of ensembles of multi-classifiers that does not commit to

a single ML workflow. Thus, we conceive a much simpler AutoML approach that

can achieve better or competitive performance in the general-purpose domain as

well as in TF.

This chapter is organised as follows. First, Section 5.2 introduces AutoEn.

Next, Section 5.3 exposes the methodology wherein the the experimental frame-

work is summarised. Next, Section 5.4 analyses the results obtained. Afterwards,

Section 5.5 presents a case study where the proposed method is tested on supervised

TF problems following experimental set ups previously defined. Finally, conclu-

sions are discussed in Section 5.6.
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5.2 Proposed AutoML method
Based on the motivation presented above, in this section, we introduce AutoEn.

It is a new AutoML method based on ensembles of pre-defined multi-classifiers

composed of a sequence of preprocessing techniques plus one ML classifier.

Figure 5.1 introduces the architecture of AutoEn. This AutoML replaces the

online search and optimisation of individual pipelines by the automated generation

of ensembles. Similarly to Auto-sklearn, it has in its inner structure a base of di-

verse pipelines that were trained on different learning tasks during the construction

of AutoEn. The pipelines within this base consist of a sequence of data prepro-

cessing technique and a classifier algorithm. The underlying idea of using a set of

pre-defined pipelines is offering for every learning task, ML workflows different

in their nature that can be less prone to overfitting issues. Differently from Auto-

sklearn, we will not use meta-features to decide what pipelines are part or not of

the ensemble construction.

Figure 5.1: General workflow of AutoEn that is composed of two main blocks: 1)
a set of predefined pipelines trained on different learning tasks and 2) an ensemble
component that generates a multi-classifier system, from the collection of pipelines,
when a new dataset comes

A meta-learning approach should be able to assist us in finding the most promis-

ing pipelines to be part of the ensemble. However, we observed in [213] that this
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idea can only correctly work under a good enough set of meta-features able to char-

acterise very different datasets, which unfortunately it is not always the case. To

avoid relying on meta-features, when new input data comes in AutoEn, it assesses

the performance of the base of pipelines on a validation set. Depending on their

validation errors, the pipelines can or cannot be part of the ensemble construction.

Thus, we avoid the drawbacks of meta-learning when facing very diverse learning

tasks.

Details about the automatic selection and construction of the ensemble based

on these pipelines are presented in Figure 5.2. In step (1), it receives a new and

unseen dataset that later in step (2) is split into train, validation and test sets. Then,

in step (3), we retrieve the set of available ML pipelines.

Figure 5.2: Automated selection and construction of the ensemble based on the set of
pipelines

Having the list of optimised pipelines at hand, in step (4), it is possible to filter

them to improve computational efficiency or not. The latter decision implies either

to directly train the complete list of pipelines on the training set (”No” path) or

to reduce the list to have a smaller set (”Yes” path) to enhance the computational
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efficiency. The former option is the default mode of our AutoML method. At the

same time, the ”Yes” path implies selecting a sample of the training set (dashed line

in Fig. 5.2), which in turn is divided into training and validation set (reduced train

and validation set in Fig. 5.2) to filter the pipelines and choose the fastest ones.

After selecting the complete list of pipelines or a reduced version of it, the next

step is training the available pipelines in the complete train set and ranking them

according to their errors in the validation set (step 5). After that, we proceed to

build an ensemble from this set of trained pipelines (step 6). We implemented the

ensemble selection approach introduced by [214]. The latter is a greedy proce-

dure that starts from an empty ensemble and then iteratively adds the model that

maximises ensemble performance in the same validation set in which the pipelines

were previously assessed.

For our AutoEn, we initialise the ensemble with one element, which is the

pipeline with the highest performance of the validation set. From the one-element

ensemble, we start to append new pipelines, with equal weights, to the one-element

ensemble until reaching a predefined ensemble size. It is essential to note the

inclusion of new pipelines to the ensemble allows repetitions; this means one

high-performance pipeline can appear multiple times in the final ensemble. Fi-

nally, in step (7), the pipelines that composed the ensemble are re-trained on train-

ing+validation partitions to make classification on the unseen test set. For this final

step, the pipelines that appear multiple times in the ensemble are only re-trained

once; thus, we can decrease the computational cost of this last step.

5.3 Methodology
We compare the proposed method against the results of AutoML methods reported

in the benchmark published by Gijsbers et al. [215]. The latter is an open-source

AutoML framework that uses public datasets to conduct a thorough comparison of

state-of-the-art AutoML methods.

In this section, we show the elements related to the experimental study. We

provide details of the problems chosen for the experimentation. Then, we introduce

the measures employed to evaluate the performance of the methods. Finally, we

present the methods used for comparison.
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Table 5.1: Binary datasets of general-purpose domains

Dataset Features - Instanances Numeric Features Nominal Features Missing Values
adult 15 - 48842 6 9 6465

amazon employ 10 - 32769 0 10 0
albert 79 - 425240 26 53 2734000

apsfailure 171 - 76000 170 1 1078695
bank-mark 17 - 45211 7 10 0

blood-transf 5 - 748 4 1 0
christine 1637 - 5418 1599 38 0
credit-g 21 - 1000 7 14 0
higgs 29 - 98050 28 1 9

jasmine 145 - 2984 8 137 0
kc1 22 - 2109 21 1 0

kr-vs-kp 37 - 3196 0 37 0
nomao 119 - 34465 89 30 0

numerai28.6 22 - 92320 21 1 0
phoneme 6 - 5404 5 1 0
sylvine 21 - 5124 20 1 0

Binary and Multi-class supervised problems

We use 16 datasets of binary classification problems and 12 of multi-class problems

from the AutoML benchmark [215]. The total of 28 datasets were used in previous

AutoML papers [20], AutoML competitions [216] and ML benchmarks [217]. The

datasets vary in the number of samples and features by orders of magnitude and

vary in the occurrence of numeric features, categorical features and missing values.

Table 5.1 presents a summary of binary datasets used for the experimentation. It

shows the number of features and instances, the number of numeric and nominal

features, and the number of missing values on each dataset.

Table 5.2 introduces an overview of multi-class datasets considered for the ex-

perimentation. It summarises the number of features and instances, the number of

numeric and nominal features, and the number of classes. In this case, any of these

datasets contain missing values.
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Table 5.2: Multi-class datasets of general-purpose domains

Dataset Features - Instances Numeric Features Nominal Features Classes
car 7 - 1728 0 7 4

cnae-9 857 - 1080 856 0 9
connect-4 43 - 67557 0 43 3

dilbert 2001 - 10000 2000 1 5
fashion-mnist 785 - 70000 784 1 10

jannis 55 - 83733 54 1 4
jungle 7 - 44819 6 1 3

mfeat-factors 217 - 2000 216 1 10
segment 20 - 2310 19 1 7
shuttle 10 - 58000 9 1 7
vehicle 19 - 846 18 1 4
volkert 181 - 58310 180 1 10

Performance measures

In this section, we present the metrics used to measure the performance of meth-

ods in binary and multi-class problems, specifications about how we measure the

computational time of AutoEn, and the statistical test considered to make the com-

parison between the performance of the methods.

• Metrics: We follow the same experimental set-up proposed in the AutoML

benchmark to make fair comparisons, and therefore, we use the same per-

formance measures. In particular, the area under the receiver operator curve

(roc auc score) is used for binary classification problems, and log loss score

is used for multi-class problems. Besides, both measures are averages of

ten-fold cross-validation.

• Computational time: To measure how much time AutEn takes since new

input data comes in until it makes final predictions, we estimate the execu-

tion time in seconds extracted from the system clock. Concretely, we start

to measure this time when AutoEn receives the input data until it outputs

the final classification of the ensemble built during the online search of the

method.
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• Statistical tests: We use non-parametric statistical tests to assess the dif-

ferences in the performance of the methods [208]. First, Friedman’s test

for multiple comparisons is applied to check whether there are differences

among the methods. Then, the Holm’s test is used to check whether the

variations of the Friedman ranking are statistically significant or not.

Competitors and baselines

For the experimentation carried out in this chapter, AutoEn has used the pipelines

list stored in Auto-sklearn’s knowledge base. These pipelines were generated and

tunes employing sequential model-based optimisation [91] using a search space of

15 classifiers and 18 preprocessing techniques, all of them implemented in scikit-

learn ML library. The classifier can be categorised in linear models, support vector

machines, discriminant analysis, nearest neighbours, naive Bayes, decision trees

and ensembles. Additionally, data preprocessing techniques include rescaling, im-

putation of missing values, one-hot encoding, feature selection, kernel approxima-

tion, feature clustering and polynomial feature expansion. The interested reader

can consult [218] to know more details about these classifiers and preprocessing

techniques.

The referenced AutoML benchmark makes comparisons of 4 AutoML state-

of-the-art methods: H2O, AutoWEKA, Auto-sklearn and TPOT. In this chapter,

we make comparisons against the same AutoML method used in Chapter 4 for

supervised TF problems: Auto-WEKA and Auto-sklearn. Additionally, we include

the same baselines methods of the referenced AutoML benchmark. They are a

constant predictor, which always predicts the class prior (CnstPrd), an untuned

Random Forest (RF), and a tuned Random Forest (tuned RF). We also include the

winner approach (BestV ML) of the experimentation carried out with Auto-sklearn

in Chapter 4.

Auto-sklearn [1] and Auto-WEKA [20] were deployed with their default hy-

perparameter values and search spaces, since most users will use them in this way,

and their time budget per fold was 1 and 4 hours. RF uses scikit-learn 0.20 de-

fault hyperparameters, and tuned RF is built with 2000 estimators. For AutoEn

and AutoEn economy (AutoEn ec), their main parameters are shown in Table 5.3.
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Table 5.3: Initial hyperparameters of AutoEn for its two operative modes

Hyperparameters AutoEn AutoEn ec

Ensemble size 50 50

Data partition per fold
train: 60%,

validation: 20%,
test: 20%

train: 60%,
validation: 20%,

test: 20%
Data partition to
filter pipelines

-
10% of the

original train set
Time left for a pipeline

to be trained in the pipelines
filtering phase

- 36 seconds

5.4 Results and Analysis
This section analyses the results obtained from different angles. Specifically, our

aims are:

• To compare the competitiveness and the significance of AutoEn performance

with respect to AutoML competitors and baselines in binary and multi-class

learning tasks.

• To investigate the main benefits of an AutoML method without allocating

any time budget when dealing with classification datasets of different sizes.

• To contrast the differences in performance and runtime between AutoEn and

its economy mode.

Table 5.4 shows the mean roc auc score and log loss score values of our

AutoML method in its default (AutoEn) and economy modes (AutoEn ec), the

AutoML competitors (AutoSkl 1h, AutoSkl 4h, AutoW 1h, AutoW 4h) and the

baseline methods on the test phase. The best result for each dataset is highlighted

in bold-face. Note that for binary datasets, the higher the performance value (roc -

auc), the better, while for multi-class datasets, the lower the loss, the better.

Observing Table 5.4, we can point out the following:
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Table 5.4: Mean roc auc (binary problems) and log loss (multi-class problems) val-
ues obtained by AutoEn, AutoEn ec, the AutoML competitors and the baseline meth-
ods. Values highlighted in bold are the highest performance obtained by any of the
methods on every dataset.

Type Dataset AutoSkl 1h AutoSkl 4h AutoW 1h AutoW 4h ConstPrd RF tuned RF BestV ML AutoEn AutoEn ec

Binary

adult 0.930 0.930 0.908 0.909 0.500 0.909 0.909 0.917 0.920 0.920
amazon employee 0.856 0.849 0.809 0.820 0.500 0.864 0.863 0.859 0.864 0.863
albert 0.748 0.748 0.724 0.724 0.500 0.738 0.738 0.739 0.702 0.704
apsfailure 0.991 0.992 0.965 0.984 0.500 0.991 0.991 0.990 0.991 0.989
bank-marketing 0.937 0.937 0.827 0.909 0.500 0.931 0.931 0.931 0.934 0.935
blood-transfusion 0.757 0.763 0.741 0.742 0.500 0.686 0.689 0.730 0.741 0.735
christine 0.830 0.831 0.802 0.809 0.500 0.806 0.810 0.816 0.825 0.811
credit-g 0.783 0.782 0.753 0.744 0.500 0.795 0.796 0.781 0.786 0.795
higgs 0.793 0.809 0.677 0.757 0.500 0.803 0.803 0.798 0.807 0.807
jasmine 0.884 0.883 0.861 0.865 0.500 0.888 0.889 0.878 0.881 0.883
kc1 0.843 0.839 0.814 0.818 0.500 0.836 0.842 0.840 0.852 0.844
kr-vs-kp 1.000 1.000 0.976 0.979 0.500 0.999 1.000 1.000 0.998 0.998
nomao 0.996 0.996 0.984 0.982 0.500 0.995 0.995 0.995 0.996 0.969
numerai28.6 0.529 0.530 0.520 0.528 0.500 0.520 0.521 0.529 0.532 0.530
phoneme 0.963 0.962 0.957 0.965 0.500 0.965 0.966 0.970 0.972 0.970
sylvine 0.990 0.991 0.975 0.977 0.500 0.983 0.984 0.989 0.989 0.990

Multi-class

car 0.010 0.010 0.243 0.122 0.836 0.144 0.047 0.105 0.065 0.070
cnae-9 0.171 0.168 0.873 1.173 2.197 0.301 0.297 0.205 0.178 0.182
connect-4 0.426 0.387 0.741 1.427 0.845 0.495 0.478 0.483 0.460 0.461
dilbert 0.097 0.063 1.787 1.009 1.609 0.328 0.329 0.033 0.033 0.034
fashion-mnist 0.354 0.358 0.581 0.902 2.303 0.361 0.362 0.345 0.314 0.315
jannis 0.705 0.685 6.271 1.885 1.109 0.728 0.729 0.710 0.702 0.701
jungle 0.234 0.223 1.559 2.695 0.935 0.438 0.402 0.216 0.215 0.215
mfeat-factors 0.099 0.093 0.627 0.656 2.303 0.234 0.201 0.160 0.093 0.088
segment 0.060 0.063 0.501 0.427 1.946 0.084 0.069 0.074 0.061 0.069
shuttle 0.001 0.000 0.015 0.015 0.666 0.001 0.001 0.000 0.000 0.001
vehicle 0.395 0.379 2.105 5.560 1.386 0.497 0.486 0.352 0.341 0.332
volkert 0.945 0.925 1.110 8.329 2.053 0.980 0.979 0.925 0.858 0.858

• As general overview, in binary datasets there are ties of at least 2 methods in 5

datasets: adult, albert, bank marketing, kr-vs-kp, and nomao. With respect to

multi-class datasets, there are 5 ties of at least 2 methods in car, dilbert, dil-

bert, jungle and volkert datasets. Summarising , there is no AutoML method

that consistently outperforms all AutoML competitors on binary and multi-

class; and AutoML scores are relatively close to the performance of tuned -

RF. Additionally, any of the AutoML methods outperforms the tuned RF on

the complete list of datasets.

• Another interesting aspect of results in Table 5.4 is Auto-sklearn and Auto-

WEKA results are quite similar under the time budgets of 1 and 4 hours

per fold. The latter means that the optimisation process carries out by those

2 methods only brings slight score improvements. Particularly for binary-
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datasets, Auto-sklearn only achieves improvements with a longer execution

time in apsfailure, blood-transfusion, christine, numerai28.6 and sylvine.

Those improvements range from 0.001 to 0.007. In amazon employee ,

credit-g, jasmine, kc-1 and phoneme, Auto-sklearn obtains worse perfor-

mance with 4 hours execution time than the performance it obtains with

only 1 hour. For the case of multi-class datasets, although the improvements

are greater, they do not reach at least 10% of enhancement; datasets cnae-

9, connect-4, dilbert, jannis, vehicle and volkert exemplified the aforemen-

tioned situation. As well as binary datasets, sometimes Auto-sklearn perfor-

mance decreases with longer execution times in fashion-mnist and segment

datasets. Such worsening under longer time budgets allocated for the its op-

timisation could be due to overfitting issues such as it has been corroborated

by previous research [213, 215].

• For the case of Auto-WEKA, the behaviour of improvements from 1 to 4

hours are quite similar with respect to Auto-sklearn. In binary and multi-

class datasets there are supervised problems wherein overfitting also seems

to affect the performance of Auto-WEKA (adult, albert, blood-transfusion,

jasmine, kc1, kr-vs-kp,mefeat-factors, suttle datasets). In only some datasets

there are significant improvements with regard to the shortest execution time

(amazon-employee, apsfailure, bank-marketing, and higgs dataset). More-

over, there is a considerable worsening in performance when Auto-WEKA

receives a longer execution time in some multi-class problems: cnae-9, connect-

4, jungle, vehicle and volkert.

To assess whether the differences in performance observed in Table 5.4 are sig-

nificant or not, we used non-parametric statistical tests. Two statistical analyses

have been applied following the guidelines proposed in [208]. First, Friedman’s

test for multiple comparisons has been applied to check whether there are signifi-

cant differences among AutoEn in its two modes, the AutoML competitors and the

baseline methods. Then, the Holm post-hoc test has also been applied to assess the

significance of the differences in performance.
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Table 5.5: Binary datasets: Friedman’s average ranking and p-values obtained through
Holm post-hoc test using AutoSkl 4h as control method

Methods Av. Ranking p-values
AutoSkl 4h 3 -
AutoSkl 1h 3.4062 1

AutoEn 3.5938 1
AutoEn ec 4.4062 0.4391
tuned RF 4.5938 0.3990

BestV ML 5 0.1943
RF 5.4062 0.0776

AutoW 4h 7.25 0.0008
AutoW 1h 8.3438 0

Table 5.5 exposes the test outcomes for binary datasets and again p-values lower
than 0.05 are shown in bold. In this case, AutoSkl 4h is the method in the first posi-
tion of the ranking. However, it is interesting to note AutoSkl 4h is only statistical
better than AutoW 1h and Auto 4h, which is the AutoML with a search strategy
only based on optimisation. The rest of the methods, including RF, tuned TF and
BestV ML, have better performance than the latter AutoML approach.

Table 5.6 summarises test results for multi-class datasets and significant dif-
ferences with p-values lower than 0.05 are highlighted in bold. AutoEn is the
method in the first position of Friedman’s average ranking and such as binary prob-
lems, there are no significant statistical differences among AutoEn, Auto-sklearn
and BestV ML methods. Moreover, in multi-class datasets, AutoEn is better than
Auto-WEKA and the two variants of RF.

From Tables 5.5 and 5.6, it is possible to observe that despite the Friedman test
provides a ranking of the methods evaluated, there were no statistical differences
among some of them, particularly between the AutoML methods. Therefore, to
better assess the performance of AutoEn and AutoEn ec, we introduce the follow-
ing analyses.

In Figures 5.3 and 5.4, each point compares AutoEn and AutoEn ec to a second
method on binary problems, respectively. In both Figures, the x-axis position of the
points is the roc auc score of our method on binary datasets. The y-axis position
represents the performance metric of the comparison algorithms. Points below the
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Table 5.6: Multi-class datasets: Friedman’s average ranking and p-values obtained
through Holm post-hoc test using AutoEn as control method

Methods Av. Ranking p-values
AutoEn 2.25 -

AutoSkl 4h 2.7083 0.6818
AutoEn ec 2.9167 0.5509
AutoSkl 1h 3.6667 0.2051
BestV ML 4.0833 0.1010
tuned RF 5.75 0.0017

RF 6.7083 0.000067
AutoW 1h 8.375 0
AutoW 4h 8.5417 0

y=x line correspond to datasets for which our method performs better than a second

method.

Figure 5.3: ROC-AUC score of AutoEn over 16 binary datasets

Similarly, Figures 5.5 and 5.6 compare AutoEn and AutoEn ec to a second

method in multi-class datasets. Note that log loss score is a minimisation metric;

therefore, points above y=x are datasets wherein AutoEn and AutoEn ec have a

higher performance than a second method. For this latter case, the values are nor-

malised between 0 and 1, and outliers were discarded. The reason to normalise the

values is that, as was shown in Table 5.4, there are multi-class problems wherein
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Figure 5.4: ROC-AUC score of AutoEn ec over 16 binary datasets

some methods obtained values greater than 1.

Figure 5.5: Log loss score of AutoEn over 12 multi-class datasets

In a general way, it can be observed for binary datasets, AutoEn and AutoEn ec

have in the majority of the cases similar results to the comparison methods. On

the other hand, in multi-class problems, our two approaches have a performance

generally better than the other methods.

Finally, as the computational cost is also a relevant factor in AutoML, Figure

5.7 shows the execution time per fold that AutoEn took to make classifications on
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Figure 5.6: Log loss score of AutoEn ec over 12 multi-class datasets

binary datasets. The Figure also plots the execution time of its economy mode.

Figure 5.7 also has straight lines that represent the time thresholds of the two op-

timisation execution times associated with Auto-sklearn and Auto-WEKA. Thus,

the purpose is to check whether the execution times of AutoEn can be in-between,

below or beyond these two thresholds.

In Figure 5.7, the execution time of AutoEn in its default mode has three dif-

ferent behaviours. First, in blood-transfusion, credit-g, jasmine, kc1, kr-vs-kp,

phoneme and sylvine datasets, AutoEn spends less than 60 minutes per fold that

is the shortest execution time allocated for Auto-sklearn and Auto-WEKA. Sec-

ondly, for adult, amazon employee, albert, bank-marketing, christine and nomao

datasets, its execution time is in-between the the two thresholds. Finally, for the re-

maining datasets (apsfailure, higgs, numerai28.6), AutoEn takes more than 4 hours

of time. With resgard to AutoEn ec, its execution time is below 4 hours in all bi-

nary datasets, and as it was observed in Figure 5.4, its performance remains quite

similar to AutoEn.

Figure 5.8 summarises AutoEn and AutoEn ec execution times per fold of in

multi-class datasets. Besides, it also shows the 2 time thresholds of the two optimi-

sation execution times carried out by Auto-sklearn and Auto-WEKA. Significant

reductions of time can be seen in dilbert, fashion-mnist, jannis and volkert datasets,

without affecting the performance as was observed in Figure 5.6.
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Figure 5.7: AutoEn execution times in binary datasets under its default and economy
modes

5.5 Case Study: Improving Traffic Forecasting with
AutoEn
In this section, we introduce a case study of AutoEn in TF. We aim to demon-

strate that this improved general-purpose AutoML approach can enhance the per-

formance of AutoML in the TF domain. To this end, we test AutoEn against Auto-

sklearn in various multi-class TF problems that were previously used in Chapter

4. The rest of this section is organised as follow. First, Section 5.5.1 presents the

experimental framework of this case study. Then, Section 5.5.2 introduces and

analyses the main results obtained.

5.5.1 Experimental framework

1. Datasets: For this case study, we approach TF as a supervised classification

problem. The objective is to predict LoS. We have used 18 freeway (10) and
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Figure 5.8: AutoEn execution times in multi-class datasets under its default and econ-
omy modes

urban (8) datasets of Type I used in Chapter 4.

2. Performance measures

• Metrics: We use for this case study the same experimental framework

for multi-class problems proposed in Section 5.3. This means that we

assess the performance of results using loss score averaged over ten-

fold cross-validation per dataset.

• Statistical tests: We also made use of the same two non-parametric sta-

tistical tests to assess the differences in the performance of the methods:

Friedman’s and Holm’s tests.

3. Competitors and baseline: For the experimentation carried out in the case

study, AutoEn used again the pipelines list stored in Auto-sklearn’s knowl-

edge base. Besides, we did not consider AutoEn ec due to the size of the

datasets considered. Freeway datasets are around 10.000 instances, and ur-

ban datasets have approximately 2.500 instances. These datasets are below
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50.000 instances, and as it was observed in Section 5.4, the economy mode
of AutoEn has a higher impact on bigger datasets to the ones used in the case
study.

In the case of AutoML competitors, we have made comparisons against
Auto-sklearn with its default hyperparameter values using three execution
times (ET): 15, 60 and 150 minutes. Each ET is considered as individual
AutoML competitor. Additionally, as baseline methods, we use a tuned RF
built with 2000 estimators and BestV ML, which was the winner approach
in the experimentation carried out with Auto-sklearn in Chapter 4.

5.5.2 Results and Analysis
This section presents and analyses the results obtained for the case study of AutoEn
in TF. Specifically, we aim to compare the competitiveness and the significance
of AutoEn with regard to a general-purpose AutoML method as Auto-sklearn in
supervised TF problems.

Table 5.7 shows the mean log loss score values of our AutoML method, the
AutoML competitors (AutoSk 15m, AutoSk 60m, AutoSk 150m) and the baseline
methods on the test phase. The best result for each dataset is highlighted in bold-
face, and note that the lower the loss value (log loss), the better. Observing Table
5.7, we can point out the following:

• As a general overview of results, AutoEn is the most competitive learning
approach. This can be seen in the wins distribution as follows: (11) AutoEn,
(4) AutoSk 60m, (2) AutoSk 150m, and (1) AutoSk 15m. Moreover, Au-
toEn and the three ETs of AutoSk are better than RF over all datasets; while
they are better than BestV ML in almost all datasets.

• In freeway datasets, AutoEn is the better approach, especially in time hori-
zons of predictions that range from 30 to 60 minutes in datasets with temporal-
spatial (TS) traffic data. On the other hand, AutoEn is the better approach in
all datasets that have only temporal (T) traffic data. Besides, AutoSk 15s and
AutoSk 60m are more competitive in shorter time horizons (5 and 15 min-
utes) of freeway datasets with TS traffic data. In this sense, AutoEn achieves
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Table 5.7: Mean log loss (values obtained by AutoEn, the three ET of Auto-sklearn
and the two baseline methods. Values highlighted in bold are the highest performance
obtained by any of the methods on every dataset

Type dataset AutoEn AutoSk 15m AutoSk 60m AutoSk 150m BestV ML RF

Freeway

T CD 5m 0.220 0.229 0.225 0.223 0.244 0.233
T CD 15m 0.340 0.360 0.346 0.348 0.371 0.366
T CD 30m 0.381 0.398 0.389 0.391 0.417 0.442
T CD 45m 0.393 0.438 0.429 0.420 0.439 0.472
T CD 60m 0.401 0.499 0.454 0.453 0.424 0.489
TS CD 5m 0.128 0.117 0.114 0.116 0.142 0.133

TS CD 15m 0.166 0.163 0.164 0.169 0.187 0.185
TS CD 30m 0.186 0.193 0.192 0.197 0.212 0.218
TS CD 45m 0.180 0.195 0.182 0.182 0.199 0.217
TS CD 60m 0.182 0.218 0.197 0.204 0.185 0.229

Urban

T CD 15m 0.530 0.502 0.500 0.503 0.537 0.539
T CD 30m 0.538 0.516 0.510 0.505 0.536 0.568
T CD 45m 0.530 0.513 0.512 0.495 0.537 0.571
T CD 60m 0.534 0.508 0.500 0.508 0.553 0.569

TS CD 15m 0.406 0.390 0.387 0.389 0.412 0.420
TS CD 30m 0.429 0.435 0.434 0.437 0.468 0.461
TS CD 45m 0.439 0.447 0.453 0.452 0.494 0.482
TS CD 60m 0.435 0.437 0.438 0.437 0.457 0.485

Wins 11 1 4 2 0 0

to offer competitive results over long-term time horizons that were identified
as a drawback of other AutoML approaches in Chapter 4.

• In urban datasets, AutoEn is more competitive in datasets that contain temporal-
spatial (TS) data. Contrary, its performance is just behind Auto-sklearn in
datasets with only temporal (T) traffic data.

• As it was previously discussed in results of Chapter 4, longer ETs allocated
for the optimisation do not guarantee better performance. This assumption
work properly in some datasets (freeway: T CD 5m, T CD 45m, T CD 60m;
urban: T CD 30m, T CD 45m). However, in some other cases, longer ETs
end up with similar results to the ones obtained with shorter ETs (freeway:
TS CD 5m, TS CD 30m; urban: T CD 15m, TS CD 60m); or in the worst of
the cases, they tend to decrease the performance of Auto-sklearn (freeway:
TS CD 15m, TS CD 30m; urban: TS CD 15m, TS CD 30m).
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To assess whether the differences in performance observed in Table 5.7 are sig-

nificant or not, we used non-parametric statistical tests. First, Friedman’s test for

multiple comparisons has been applied to check whether there are substantial dif-

ferences among AutoEn, the AutoML competitors and the baseline methods. Then,

Holm post-hoc test has also been used to assess the significance of the differences

in performance.

Table 5.8 exposes the test outcomes and the p-values lower than 0.05 are shown

in bold. In this case, AutoEn is the method in the first position of the ranking.

However, it is only statistical better than RF and BestV ML.

Table 5.8: Friedman’s average ranking and p-values obtained through Holm post-hoc
test using AutoEn as control method

Methods Av. Ranking p-values
AutoEn 2.1667 -

AutoSk 60m 2.3333 0.9520
AutoSk 150m 3.6111 0.9520
AutoSk 15m 3.3333 0.1841
BestV ML 4.9444 0

RF 5.6111 0

From Tables 5.8, it is possible to observe that despite the Friedman’s test pro-

vides a ranking of the methods evaluated, there were no statistical differences

among some of them, particularly between the AutoML methods. Therefore, to

better assess the performance, we introduce the following analyses of Figure 5.9.

Each point compares AutoEn to a second method on the multi-class datasets. The

x-axis position of the points is the log loss score of our method on, while the y-axis

position represents the performance metric of the comparison algorithms. Points

above the y=x line correspond to datasets for which AutoEn performs better than a

second method. From Figure 5.9 it can be observed that AutoEn has in most of the

cases better results than the comparison methods.

In summary, AutoEn can overcome the optimisation and meta-learning issues

of AutoML in TF. A simple strategy based on the construction of multi-classifiers

systems achieves better results in TF problems without pre-define time budgets for

the optimisation process and without being limited by the representativeness of

meta-learning. Although AutoSk 60m and AutoSk 150m achieved better results

118



5.6 Conclusions

Figure 5.9: Log loss score over 18 TF datasets. Points above the y = x line corre-
spond to datasets for which our method performs better than a comparison algorithm

than AutoEn in some particular cases, non-expert ML user must test Auto-sklearn

multiple times using different ETs to find these competitive results.

5.6 Conclusions
In this chapter, we proposed a new AutoML method for supervised problems that

has a search strategy supported on the construction of ensembles of multiple classi-

fiers. The AutoML method was tested against Auto-sklearn and Auto-WEKA, two

state-of-the-arts AutoML methods, in multiple binary and multi-class supervised

problems of a well-established AutoML benchmark. Besides, we test AutoEn in a

case study of TF considering diverse multi-class TF problems. The main conclu-

sions drawn from the results are:

• The online phase of AutoML should be focused on building ensembles rather

than individual ML pipelines. Thus, computational effort should be directed

to generate high-performance pipelines in the offline period of AutoML,

which later contribute to producing competitive and fast ensembles during

the online stage of AutoML. These ensembles are less prone to overfitting

and are not exposed to the meta-learning and meta-features drawbacks. Al-

though this ensemble approach can also be optimised, its hyperparameters
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are a reduced set of values. Such characteristic of AutoEn constitutes a much
less complicated search space compared against the online optimisation of
pipelines with a higher degree of hyperparameters.

• Ensembles of multi-classifiers can be more adaptable to datasets of differ-
ent sizes, which lead to optimising computational efficiency of AutoML. On
the one hand, high-performance solutions can be achieved for small- and
medium-size dataset faster than traditional optimisation approaches (e.g.,
Bayesian optimisation, evolutionary programming). Contrary, for big datasets,
although the time consumption could increase, the computation effort of
the online phase is focused on finding competitive combinations of multi-
classifiers. This approach is highly parallelisable compared to generating
and fine-tuning individual pipelines that are even more costly to be evaluated
in big datasets.

• AutoEn can be better and more competitive than state-of-the-art AutoML
approaches in supervised TF problems. Notably, it is less prone to over-
fitting than Auto-sklearn because its ensemble strategy makes more robust
predictions as multiple classifiers are considered at the same time. Besides,
AutoEn can better adapt to different time horizons, specifically, in long-term
time horizons that are a crucial element for transportation users when are
managing traffic flows.

• Finally, it is relevant to note that in the TF domain, transportation users non-
experts in ML could use other AutoML methods focused on optimisation of
individual pipelines and achieve satisfactory results. However, as the core
of other AutoML strategies is based on optimisation, the user should test
multiple times different time budgets to deliver competitive results. This
is a task that involves human effort and time costs, which does not have
clear guidelines to decide the best ET depending on the size of the dataset at
hand. Therefore, AutoEn arises a promising approach that overcomes these
limitations while it can supply the demands of non-expert ML users in TF
problems.
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We can judge our progress by the
courage of our questions and the
depth of our answers, our willing-
ness to embrace what is true rather
than what feels good.

Carl Sagan
CHAPTER

6
Conclusions and Future

Work

This final chapter summarises the main contributions, limitations, and future
lines of research resulted of this thesis. First, a consolidated view of results and
contributions is presented in Section 6.1. Afterward, limitations of these contri-
butions are identified and future research are discussed in Section 6.2. Finally,
Section 6.3 gives a list of publications carried out as co-author that derived from
the knowledge gained in this research.

6.1 Summary of Contributions
TF, as well as other data-driven fields, is experiencing the generation of significant
volumes of complex data. This data availability has promoted the use of ML to ap-
proach the prediction of traffic. Concretely, employing ML in TF represents a step
forward in the development of more accurate and robust ITSs, as ML can mine
intricate traffic patterns embedded in data without knowing traffic mechanisms.
However, the success of ML in TF does not come from solely applying ML meth-
ods in isolation to make traffic predictions. Instead, complete ML pipelines (the
workflow form data preprocessing to model assessment and selection) are required
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to exploit raw traffic data fully. Searching for the most suitable data preprocess-

ing approach that better fit the TF problem at hand and the ML method selected

improves the performance of ML in TF. However, it is a complex problem that in-

volves human effort and time costs that demand expert ML knowledge to deal with

it.

In the context discussed above, AutoML is at the cutting edge of ML research as

a valuable approach for fields exposed to the production of vast volumes of data for

which a thorough ML expert analysis is scarce and not always affordable such as

TF. However, as data production keeps increasing at rates never seen before, current

AutoML approaches need to be reformulated to pursue scalability and simplicity

while maintaining its competitiveness. The latter will allow AutoML to address

the current and upcoming generation of big datasets in diverse specific problem

domains (e.g.,. ITSs). This context demands research efforts to develop new and

novel AutoML methods that overcome present AutoML drawbacks and take advan-

tage of all available resources (raw data, preprocessing approaches, ML methods)

to deal with different data-driven problems more effectively and efficiently.

The research developed in this dissertation has contributed to the improvement

of AutoML for supervised learning problems. The experiments have been con-

ducted employing TF as application area, which is a clear example of research

fields with large amounts of data wherein expert ML knowledge is not always an

affordable asset. A thorough review of the state-of-art about ML, AutoML and TF

have been completed. After this, three research stages have been developed fol-

lowing a progressive order, in which early findings take part in the final research

outcomes. The main contributions are revisited in the paragraphs presented below.

The first contribution has addressed the development of a novel taxonomy to

categorise TF problems from a supervised learning perspective (Chapter 3). It al-

lowed us to understand, organise and systematise the existing knowledge, trends

and gaps of TF from a classical supervised learning perspective. The key novelty

of the proposed taxonomy lies in its design based on core characteristics that may

alter the complexity and the modelling process of TF problems. Based on this cat-

egorisation of TF problems, it is possible to identify both the most commonly ML

methods used in a diversity of TF problems and the lack of guidelines to determine

the most suitable approaches to address each problem. Moreover, the taxonomy
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highlights the absence of data prepossessing techniques in the modelling process

of TF problems. This is a crucial issue as ITS technologies are continually col-

lecting raw and complex traffic data that needs to be preprocessed before being fed

into ML methods. However, without expert ML knowledge available, it is difficult

to exploit the synergies between preprocessing approaches and ML methods fully.

Finding competitive combinations of preprocessing techniques and ML methods in

the absence of ML knowledge is not a trivial task that involves human effort and

times cost. Therefore, AutoML appears as a promising approach to solve these

issues and play the role of ML experts focusing on generating competitive learning

approaches that are able to deal with TF data.

After introducing the mentioned taxonomy and analysing its results, a second

contribution has encompassed a comprehensive study of general-purpose AutoML

in supervised learning (Chapter 4). We carried out a detailed analysis to figure

out the strengths and weaknesses of the most commonly used AutoML approaches

in supervised learning tasks. We used TF as an application area not previously

addressed by AutoML. To accomplish this aim, we tested the performance of Au-

toML approaches based on pure optimisation and meta-learning with optimisation

in different supervised TF problems. The key novelty of this contribution is an

in-depth analysis of how the various components of AutoML (meta-learning, opti-

misation, ensemble learning) behave in supervised tasks such as TF, which allowed

us to identify what are the main contributions of each component into the final

performance of predictions. These analyses were not done before and allowed us

to identify key points to improve the current state of AutoML in general-purpose

domains as well as in specific problems such as TF.

The preceding investigation of AutoML approaches provided substantial evi-

dence that supports the search of alternative strategies for the automatic generation

of ML pipelines. Concretely, we realised that current AutoML strategies based on

on-line optimisation of pipelines suffer from relevant issues such as overfitting, low

scalability, and not a broad enough representativeness of meta-learning in some su-

pervised learning tasks like TF. In this context, the final contribution of this thesis

is a novel AutoML approach presented in Chapter 5. We introduce AutoEn, a new

AutoML method that works based on the automated generation of ensembles from

a predefined set of ML pipelines. This is a more straightforward strategy less prone
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to overfitting that also is not exposed to meta-learning drawbacks; therefore, it can
be more adaptable to datasets of different sizes and boost the computational effi-
ciency of AutoML. We tested AutoEn against general-purpose AutoML competi-
tors in very diverse binary and multi-class supervised problems, including TF. From
our empirical results, AutoEn obtained better or competitive results with respect to
the AutoML state-of-the-art approaches. Thus, AutoEn paths the way towards Au-
toML frameworks purely based on ensemble strategies that are competitive and
efficient dealing with different data-driven problems, including TF.

6.2 Limitations and Future Work
In relation to the contributions summarised above, this thesis also presents limi-
tations that need to be mentioned. In this section, we highlight some aspects that
would enhance the research conducted and remark ideas of future work that poten-
tially would overcome the limitations identified.

1. The proposed taxonomy to categorise TF problems from a supervised learn-
ing perspective (Chapter 3) has allowed identifying well-established trends
and gaps of classical ML methods in TF. At the moment, they are the au-
tomated learning approaches most commonly used in this data-driven field.
However, it is worth noting that ITS technologies are continually evolving
and recently, new formats of traffic data are being collected [219]. These
new formats correspond to video records and traffic images for which Deep
Learning (DL) approaches are more appropriate than classical ML [220,
221]. Therefore, as future work, it would be interesting to address the study
of DL methods and new traffic data sources such as the ones mentioned
above. Taking as a starting point the proposed taxonomy, the inclusion of
DL and video-image data sources could enhance the categorisation power of
the taxonomy to cover a broader space of ML methods and TF problems. In
this sense, new attributes may be added to the taxonomy as the preprocessing
approach used by DL methods is embedded in their inner structure. Besides,
new attributes may also be required to categorise the types of network archi-
tectures whose internal mechanisms can model input traffic data in different
ways.
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Additionally, apart from supervised regression and classification that are the

most common modelling paradigms used in TF, the prediction of traffic can

be also be tackled from other data-driven modelling approaches. Recently,

unsupervised learning [74] and reinforcement learning [222] start to be used

in the transportation literature [223, 224]. Thus, the consideration of these

modelling approaches could potentially lead to new families of TF as these

learning paradigms pose modelling constraints that may alter how TF prob-

lems are modelled.

2. The thorough study of AutoML, based on optimisation and meta-learning in-

tegrated with optimisation, in specific problems such as TF has allowed us to

identify the strengths and weaknesses of general-purpose AutoML (Chapter

4). These findings offered insights to propose new AutoML approaches that

overcome the most common and relevant issues of this type of automated

methods. Therefore, these results are applicable to other specific domains,

not limited to TF, wherein AutoML could play the role of ML experts and

offers robust learning methods to approach data-driven problems. To accom-

plish this aim, we carried out the experiments using the two pioneer Au-

toML methods (Auto-WEKA and Auto-sklearn) that represent the two types

of pipeline search strategies entirely: optimisation and meta-learning with

optimisation. Currently, there is a bunch of AutoML methods (e.g.,. H2O

[24], TPOT [21]) that automatise the complete ML workflow and that can

be included in this in-depth analysis of AutoML. Their inclusion could offer

further insights about how the general-purpose approach can be adaptable to

diverse supervised learning tasks that have not been previously seen by these

AutoML methods.

Furthermore, as it was stated above, new ITS sensors are providing new traf-

fic data formats (e.g.,. video, images). Based on the proposed taxonomy and

on the families of TF problems selected to test the general-purpose approach

of AutoML, we would like to study the performance of AutoEn and other

AutoML methods in different transportation scenarios. Notably, it would be

interesting to consider TF problems that include the data sources mentioned.
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This research effort would allow mapping what are the best AutoML ap-

proaches in a broader set of TF families, which represents a valuable source

of information for transportation managers for which expert ML knowledge

is not always affordable.

3. The analysis of general-purpose AutoML in TF led us to develop AutoEn,

a new AutoML method for supervised learning problems. This automated

method has a strategy based on the construction of ensembles of multiple

classifiers, which boosts its performance in specific problems such as TF

with respect to the state-of-the-art. AutoEn is a more straightforward ap-

proach that overcomes the most common drawbacks of AutoML and im-

proves the scalability of these learning approaches. Such as it was stated

before, the core AutoEn’s search strategy is a base of very diverse and pre-

defined pipelines. Therefore, based on this fixed set of ML workflows, we

would like to work on the new generation of AutoML systems. Concretely,

we would like to develop AutoML approaches that autonomously are able

to decide when to generate new ML workflows using the pre-defined set of

pipelines at hand; and, on the other hand, that can recognise when its base

of pipelines is enough to address learning tasks similar to the ones in which

its pipelines are already high-performance ones. This approach would repre-

sent a step forward in the design of more autonomous AutoEn wherein ML

experts decisions are organised and systematised to be incorporated within

AutoML workflow.

Finally, AutoEn contains pipelines of classical ML methods as the learning

approaches most commonly used in specific problems such as TF. However,

the constant generation of new data formats is motivating the use of other

learning methods like DL. Drawing on its current design, AutoEn could be

further expanded through the inclusion of DL methods within its base of

pipelines. To accomplish this aim, our method could be adapted to work

and research in AutoDL that is a ML field focused on the automatically gen-

erating of network architectures to deal with raw and high-dimension data

[225]. Thus, AutoEn could have the opportunity to approach a broader set of
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specific domains such as Citizen Science and image classification problems
[226, 227].

Summarising, the limitations in the research conducted represent a set of im-
provements that may suggest immediate lines of work in the areas of AutoML and
TF approached from a ML perspective.

6.3 Other Publications
Apart from the scientific dissemination that supports this research, this section
presents other publications derived from the knowledge acquired during this PhD
thesis. They were made in collaboration with other researchers and are shown be-
low:

1. Title: A Graph CNN-LSTM Neural Network for Short and Long-term
Traffic Forecasting based on trajectory data.

Authors: Bogaerts T, Masegosa AD, Angarita-Zapata JS, Onieva E.

Journal: Transportation Research Part C (Impact Factor = 6.077→ Q1).

Status: Published. Vol. 112, pp. 62-77, 2019.

2. Title: Nature-Inspired Metaheuristics for optimising Information Dissem-
ination in Vehicular Networks.

Authors: Masegosa AD, Osaba E, Angarita-Zapata JS, Laña I, Del Ser J.

Congress: The Genetic and Evolutionary Computation Conference (GECCO),
2019, Prague (Republic).

3. Title: White-box flight simulator built with system dynamics to support
urban transportation decision-making and address induced travel demand.

Authors: Angarita-Zapata JS, Andrade Sosa HH, Masegosa AD.

Journal: Scientia Et Technica Journal.

Status: Published. Vol. 25, pp. 438-447, 2020.
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parameter optimization,” in Proceedings of the 24th International Confer-

ence on Neural Information Processing Systems. USA: Curran Associates

Inc., 2011, pp. 2546–2554.

[93] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization

of machine learning algorithms,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 2. USA:

Curran Associates Inc., 2012, pp. 2951–2959.

[94] M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. D. Moor, “Easy hyper-

parameter search using optunity,” Computing Research Repository - CoRR,

2014.

[95] T. Swearingen, W. Drevo, B. Cyphers, A. Cuesta-Infante, A. Ross, and

K. Veeramachaneni, “Atm: A distributed, collaborative, scalable system for

automated machine learning,” in 2017 IEEE International Conference on

Big Data, 2017, pp. 151–162.
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Higuera, M. Antón-Rodrı́guez, M. Martı́nez-Zarzuela, and I. Torre-Dı́ez,

“Wavelet-based denoising for traffic volume time series forecasting with

self-organizing neural networks,” Computer-Aided Civil and Infrastructure

Engineering, vol. 25, no. 7, pp. 530–545, 2010.

[154] X. Jiang and H. Adeli, “Wavelet packet-autocorrelation function method for

traffic flow pattern analysis,” Computer-Aided Civil and Infrastructure En-

gineering, vol. 19, no. 5, pp. 324–337, 2004.

[155] E. Vlahogianni and M. Karlaftis, “Temporal aggregation in traffic data: im-

plications for statistical characteristics and model choice,” Transportation

Letters, vol. 3, no. 1, pp. 37–49, 2011.

[156] S. Turner, W. Eisele, R. J Benz, and D. J Holdener, Travel Time Data Col-

lection Handbook. Federal Highway Administration - USA, 1998.

[157] G. Leduc, “Road traffic data: Collection methods and applications,” Energy,

Transport and Climate Change, pp. 1–51, 2008.

[158] F. Soriguera and F. Robusta, “Estimation of traffic stream space mean speed

from time aggregations of double loop detector data,” Transportation Re-

search Part C: Emerging Technologies, vol. 19, no. 1, pp. 115 – 129, 2011.

146



BIBLIOGRAPHY

[159] D. Satrinia and G. A. P. Saptawati, “Traffic speed prediction from GPS data

of taxi trip using support vector regression,” in International Conference on

Data and Software Engineering, 2017, pp. 1–6.

[160] J. Grengs, X. Wang, and L. Kostyniuk, “Using GPS data to understand driv-

ing behavior,” Journal of Urban Technology, vol. 15, no. 2, pp. 33–53, 2008.

[161] A. Bezuglov and G. Comert, “Short-term freeway traffic parameter predic-

tion: Application of grey system theory models,” Expert Systems with Ap-

plications, vol. 62, pp. 284 – 292, 2016.

[162] J. Rupnik, J. Davies, B. Fortuna, A. Duke, and S. S. Clarke, “Travel time

prediction on highways,” in International Conference on Computer and In-

formation Technology, 2015, pp. 1435–1442.

[163] D. Wang, Q. Zhang, S. Wu, X. Li, and R. Wang, “Traffic flow forecast with

urban transport network,” in 2016 IEEE International Conference on Intel-

ligent Transportation Engineering. IEEE, 2016, pp. 139–143.

[164] H. Botma and P. Bovy, The free speed functions of drivers. Delft University

Press, 2000, pp. 53–74.

[165] J. W. C. van Lint and N. J. van der Zijpp, “Improving a travel-time estimation

algorithm by using dual loop detectors,” Transportation Research Record,

vol. 1855, no. 1, pp. 41–48, 2003.

[166] F. Soriguera and F. Robuste, “Requiem for freeway travel time estimation

methods based on blind speed interpolations between point measurements,”

IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp.

291–297, 2011.

[167] Y. Zhang and A. Haghani, “A gradient boosting method to improve travel

time prediction,” Transportation Research Part C: Emerging Technologies,

vol. 58, pp. 308 – 324, 2015.

147



BIBLIOGRAPHY

[168] I. Laña, J. Del Ser, M. Vélez, and I. Oregi, “Joint feature selection and

parameter tuning for short-term traffic flow forecasting based on heuristi-

cally optimized multi-layer neural networks,” in Harmony Search Algorithm,

J. Del Ser, Ed. Springer Singapore, 2017, pp. 91–100.

[169] H. Yang, T. S. Dillon, and Y.-P. P. Chen, “Evaluation of recent computa-

tional approaches in short-term traffic forecasting,” in Artificial Intelligence

in Theory and Practice IV, T. Dillon, Ed. Springer International Publishing,

2015, pp. 108–116.

[170] I. Laña, I. Olabarrieta, M. Velez, and J. D. Ser, “On the imputation of miss-

ing data for road traffic forecasting: New insights and novel techniques,”

Transportation Research Part C: Emerging Technologies, vol. 90, pp. 18 –

33, 2018.

[171] J. Han, M. Kamber, and J. Pei, Data mining concepts and techniques, third

edition. Waltham, Mass.: Morgan Kaufmann Publishers, 2012.

[172] D. Pavlyuk, “Feature selection and extraction in spatiotemporal traffic fore-

casting: a systematic literature review,” European Transport Research Re-

view, vol. 11, no. 1, p. 6, 2019.

[173] S. Cheng, F. Lu, P. Peng, and S. Wu, “A spatiotemporal multi-view-based

learning method for short-term traffic forecasting,” International Society for

Photogrammetry and Remote Sensing - Journal of Geo-Information, vol. 7,

pp. 1–21, 2018.

[174] X. Ma, H. Yu, Y. Wang, and Y. Wang, “Large-scale transportation net-

work congestion evolution prediction using deep learning theory.” PloS one,

vol. 10, no. 3, pp. 1–17, 2015.

[175] Y. Zhang and Y. Zhang, “A comparative study of three multivariate short-

term freeway traffic flow forecasting methods with missing data,” Journal of

Intelligent Transportation Systems, vol. 20, no. 3, pp. 205–218, 2016.

148



BIBLIOGRAPHY

[176] X. Li and W. Gao, “Prediction of traffic flow combination model based on

data mining,” International Journal of Database Theory and Application,

vol. 8, pp. 303–312, 12 2015.

[177] H.-p. Lu, Z.-y. Sun, W.-c. Qu, and L. Wang, “Real-Time Corrected Traffic

Correlation Model for Traffic Flow Forecasting,” Mathematical Problems in

Engineering, vol. 2015, pp. 1–7, 2015.

[178] P. Dell’Acqua, F. Bellotti, R. Berta, and A. D. Gloria, “Time-aware mul-

tivariate nearest neighbor regression methods for traffic flow prediction,”

IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp.

3393–3402, 2015.

[179] W. Ma and R. Wang, “Traffic flow forecasting research based on bayesian

normalized elman neural network,” in IEEE Signal Processing and Signal

Processing Education Workshop, 2015, pp. 426–430.

[180] R. T. Das, K. K. Ang, and C. Quek, “ierspop: A novel incremental rough

set-based pseudo outer-product with ensemble learning,” Applied Soft Com-

puting, vol. 46, pp. 170 – 186, 2016.

[181] G. Fusco, C. Colombaroni, L. Comelli, and N. Isaenko, “Short-term traffic

predictions on large urban traffic networks: Applications of network-based

machine learning models and dynamic traffic assignment models,” 2015, pp.

93–101.

[182] D. Xia, B. Wang, H. Li, Y. Li, and Z. Zhang, “A distributed spatial–temporal

weighted model on MapReduce for short-term traffic flow forecasting,” Neu-

rocomputing, vol. 179, pp. 246–263, feb 2016.

[183] Y. Cong, J. Wang, and X. Li, “Traffic flow forecasting by a least squares

support vector machine with a fruit fly optimization algorithm,” Green Intel-

ligent Transportation System and Safety - Procedia Engineering, vol. 137,

pp. 59 – 68, 2016.

149



BIBLIOGRAPHY

[184] Z. Ma, G. Luo, and D. Huang, “Short term traffic flow prediction based on

on-line sequential extreme learning machine,” in International Conference

on Advanced Computational Intelligence, 2016, pp. 143–149.

[185] Y. Xu, H. Chen, Q.-J. Kong, X. Zhai, and Y. Liu, “Urban traffic flow pre-

diction: a spatio-temporal variable selection-based approach,” Journal of

Advanced Transportation, vol. 50, no. 4, pp. 489–506, 2016.

[186] J. van Lint, S. Hoogendoorn, and H. van Zuylen, “Accurate freeway travel

time prediction with state-space neural networks under missing data,” Trans-

portation Research Part C: Emerging Technologies, vol. 13, no. 5, pp. 347 –

369, 2005.

[187] H. Dia, “An object-oriented neural network approach to short-term traffic

forecasting,” European Journal of Operational Research, vol. 131, no. 2,

pp. 253 – 261, 2001.

[188] M. Lippi, M. Bertini, and P. Frasconi, “Short-Term Traffic Flow Forecast-

ing: An Experimental Comparison of Time-Series Analysis and Super-

vised Learning,” IEEE Transactions on Intelligent Transportation Systems,

vol. 14, no. 2, pp. 871–882, 2013.

[189] H. Chen, S. Grant-Muller, L. Mussone, and F. Montgomery, “A study of

hybrid neural network approaches and the effects of missing data on traffic

forecasting,” Neural Computing & Applications, vol. 10, no. 3, pp. 277–286,

2001.

[190] S. Ishak and C. Alecsandru, “Optimizing traffic prediction performance of

neural networks under various topological, input, and traffic condition set-

tings,” Journal of Transportation Engineering, vol. 130, no. 4, pp. 452–465,

2004.

[191] S. Huang and A. W. Sadek, “A novel forecasting approach inspired by hu-

man memory: The example of short-term traffic volume forecasting,” Trans-

portation Research Part C: Emerging Technologies, vol. 17, no. 5, pp. 510 –

525, 2009.

150



BIBLIOGRAPHY

[192] Y. Zhang and Y. Liu, “Traffic forecasting using least squares support vector
machines,” Transportmetrica, vol. 5, no. 3, pp. 193–213, 2009.

[193] B. Park, “Hybrid neuro-fuzzy application in short-term freeway traffic vol-
ume forecasting,” Transportation Research Record, vol. 1802, no. 1, pp.
190–196, 2002.

[194] S. Dunne and B. Ghosh, “Regime-based short-term multivariate traffic con-
dition forecasting algorithm,” Journal of Transportation Engineering, vol.
138, no. 4, pp. 455–466, 2012.

[195] M. Zhong, S. Sharma, and P. Lingras, “Short-term traffic prediction on dif-
ferent types of roads with genetically designed regression and time delay
neural network models,” Journal of Computing in Civil Engineering, vol. 19,
no. 1, pp. 94–103, 2005.

[196] D. Srinivasan, C. W. Chan, and P. Balaji, “Computational intelligence-based
congestion prediction for a dynamic urban street network,” Neurocomputing,
vol. 72, no. 10, pp. 2710 – 2716, 2009.

[197] N. Zhang, Y. Zhang, and H. Lu, “Seasonal autoregressive integrated moving
average and support vector machine models: Prediction of short-term traffic
flow on freeways,” Transportation Research Record, vol. 2215, no. 1, pp.
85–92, 2011.

[198] B. Gültekin, M. Sari, and O. Borat, “A neural network based traffic-flow
prediction model,” Mathematical and Computational Applications, vol. 15,
no. 2, pp. 269–278, 2010.

[199] S. He, C. Hu, G.-j. Song, K.-q. Xie, and Y.-z. Sun, “Real-time short-term
traffic flow forecasting based on process neural network,” in Advances in

Neural Networks, F. Sun, J. Zhang, Y. Tan, J. Cao, and W. Yu, Eds. Springer
Berlin Heidelberg, 2008, pp. 560–569.

[200] J. Wang, P. Shang, and X. Zhao, “A new traffic speed forecasting method
based on bi-pattern recognition,” Fluctuation and Noise Letters, vol. 10,
no. 01, pp. 59–75, 2011.

151



BIBLIOGRAPHY

[201] H. Chen, M. S. Dougherty, and H. R. Kirby, “The effects of detector spacing

on traffic forecasting performance using neural networks,” Computer-Aided

Civil and Infrastructure Engineering, vol. 16, no. 6, pp. 422–430, 2001.

[202] Y. Zhang and M.-l. Wang, “Peak traffic forecasting using nonparametric ap-

proaches,” Journal of Shanghai Jiaotong University, vol. 17, no. 1, pp. 76–

81, 2012.

[203] A. Dharia and H. Adeli, “Neural network model for rapid forecasting of

freeway link travel time,” Engineering Applications of Artificial Intelligence,

vol. 16, no. 7, pp. 607 – 613, 2003.

[204] S. Sun, C. Zhang, G. Yu, N. Lu, and F. Xiao, “Bayesian network methods

for traffic flow forecasting with incomplete data,” in European Conference

on Machine Learning, J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pe-

dreschi, Eds. Springer Berlin Heidelberg, 2004, pp. 419–428.

[205] G. Luo, “A review of automatic selection methods for machine learning algo-

rithms and hyper-parameter values,” Network Modeling Analysis in Health

Informatics and Bioinformatics, vol. 5, no. 1, p. 18, 2016.

[206] J. R. Rice, “The algorithm selection problem,” ser. Advances in Computers,

M. Rubinoff and M. C. Yovits, Eds. Elsevier, 1976, vol. 15, pp. 65 – 118.

[207] J. Park, Y. L. Murphey, R. McGee, J. G. Kristinsson, M. L. Kuang, and

A. M. Phillips, “Intelligent Trip Modeling for the Prediction of an Ori-

gin–Destination Traveling Speed Profile,” IEEE Transactions on Intelligent

Transportation Systems, vol. 15, no. 3, pp. 1039–1053, 2014.

[208] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “Advanced nonpara-

metric tests for multiple comparisons in the design of experiments in com-

putational intelligence and data mining: Experimental analysis of power,”

Information Sciences, vol. 180, no. 10, pp. 2044 – 2064, 2010.

[209] A. Tharwat, “Classification assessment methods,” Applied Computing and

Informatics, 2018.

152



BIBLIOGRAPHY

[210] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast

accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679 –

688, 2006.

[211] B. Krawczyk, B. T. McInnes, and A. Cano, “Sentiment classification from

multi-class imbalanced twitter data using binarization,” in Hybrid Artificial

Intelligent Systems, 2017, pp. 26–37.
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